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Preface 

The evolution of technology has set the stage for the rapid growth of the 
video Web: broadband Internet access is ubiquitous, and streaming media 
protocols, systems, and encoding standards are mature. In addition to Web 
video delivery, users can easily contribute content captured on low cost 
camera phones and other consumer products. The media and entertainment 
industry no longer views these developments as a threat to their established 
business practices, but as an opportunity to provide services for more 
viewers in a wider range of consumption contexts. The emergence of IPTV 
and mobile video services offers unprecedented access to an ever growing 
number of broadcast channels and provides the flexibility to deliver new, 
more personalized video services. Highly capable portable media players 
allow us to take this personalized content with us, and to consume it even 
in places where the network does not reach. 

Video search engines enable users to take advantage of these emerging 
video resources for a wide variety of applications including entertainment, 
education and communications. However, the task of information extrac-
tion from video for retrieval applications is challenging, providing oppor-
tunities for innovation. This book aims to first describe the current state of 
video search engine technology and second to inform those with the requi-
site technical skills of the opportunities to contribute to the development of 
this field. 

Today’s Web search engines have greatly improved the accessibility 
and therefore the value of the Web. The top portals prominently feature 
search capabilities and go beyond text search to include image and video 
search in various forms.  A number of smaller companies have begun to 
offer more sophisticated media search features based on content analysis. 
Academic research groups have been actively developing algorithms and 
prototypes in this area for over a decade; incorporating and advancing 
previously existing constituent technologies. 

Most media search systems rely on available metadata or contextual 
information in text form. Syndication formats such as RSS provide 
organized access to media sources and include descriptive global metadata.  
While these information sources are valuable and should be exploited, they 
are limited because they are typically brief, high level and subjective.  



Therefore the current focus of media indexing research is to develop 
algorithms to exploit the media content itself as much as possible to 
augment available metadata. In some cases, the media may contain 
associated text streams such as closed caption or song lyrics. By extracting 
and operating on these streams, a textual representation of the dialog is 
obtained and existing text information retrieval methods can then be 
applied to retrieve relevant media. Speech recognition can be employed to 
create an approximation of the transcription, and techniques such as video 
optical character recognition can also be used to generate a textual 
representation of the media content. Although these technologies are 
inherently error prone, they have been used with success for indexing 
applications. Advanced speech retrieval systems use phonetic search to 
deal with the “out of vocabulary” problem and maintain alternative 
hypotheses in the form of lattices to boost recall. 

Media retrieval that goes beyond the textual media component is more 
complex because the basic media features are not well defined and may 
not scale well for large archives. Further, formulating queries may not be 
as simple as typing a keyword. However, systems have been designed to, 
for example, retrieve images similar to a given image (query by example) 
or retrieve images based on a specification of color or shape. For 
navigating video retrieval results, techniques such as video skimming or 
mosaicing have been proposed. 

The book will have a practical emphasis with the goal of bringing 
researchers up to date on the state of the art in multimedia search 
technologies and systems. Part of the presentation will follow a logical 
flow from content acquisition, analysis to extract index data, data 
representation, media archival, retrieval and finally rendering results in a 
Web-based environment. Each of these major functional components will 
be outlined, and particular emphasis will be given to automated content 
analysis techniques since this is critical for operating video search engines 
at scale, and it presents on-going research challenges. To give the readers 
an understanding of the issues involved, individual media processing 
algorithms operating on text, audio and video will be addressed including 
text alignment, case restoration, entity extraction, speech recognition, 
speaker segmentation, and video shot boundary detection. Additionally, 
the value of operating on multiple media components simultaneously will 
be illustrated by examining multimodal processing techniques, e.g. for 
media segmentation. The role of media segmentation in improving 
relevance ranking for long-form content will be discussed. 

vi      Preface 



Who should read this book? 

The book is intended for senior undergraduates or first-year graduate stu-
dents in computer science or computer engineering, as well as profession-
als working in related fields. Although not intended for experts working 
directly on video search engines, the book will present a refreshing, broad 
perspective on video search and will have value as a reference tool. The 
topic of multimedia search spans multiple disciplines so the book will be 
valuable to experts in the constituent technologies such as speech process-
ing or information retrieval who are looking to broaden their knowledge 
beyond their current areas of expertise.  

A basic knowledge of Web application technologies, databases and 
computer networking issues is assumed. While a basic knowledge of the 
constituent technologies would be helpful, the intent will be to present 
these at an introductory level and discuss only the elements applicable to 
the problem of video search. The book explains the overall process of 
video content acquisition, indexing and retrieval with browsing, provides 
overviews of constituent technologies such as information retrieval, Inter-
net video systems, video and multimedia processing to extract index data, 
and gives examples of existing systems and describes their features. The 
readers will: 

 understand at a basic level all of the technologies used in today’s video 
search engines; 

 learn which video indexing techniques are appropriate for a given type 
of video material and be able to make inferences about which methods 
will work for new video content types; 

 be able to differentiate between proven, practical techniques and those 
that are speculative, under development, or of narrow applicability; 

 be able to determine which topics in video search are of interest to them 
for further study. 

How is this book organized? 

The book is divided into three main sections: 

I. Background and fundamentals: Chapter 1 outlines the technology 
trends which dictate that video material will increasingly be made 
available on the Web and points out the challenges that video is much 
more difficult to search than text files, and it is more difficult to 
browse. Chapter 2 addresses the nature, availability, and attributes of 

Preface    vii



different sources of video data. Details about available metadata for 
different types of video (e.g. electronic program guides, transcripts, 
etc.) are also provided. Chapter 3 reviews Internet video systems, in-
cluding topics such as bandwidth, compression, random access, 
streaming, standards, digital rights management, redirector files, etc. 
Chapter 4 introduces video search engine systems: the process of con-
tent acquisition, media processing, building a multimedia database, re-
trieval, media browsing. 

II. Media processing: To address the challenges, we need to move beyond 
existing metadata retrieval systems, and analyze the content to extract 
information for indexing. Chapter 5 gives an overview on automated 
methods, systems, and algorithms for processing media to extract in-
formation for indexing and retrieval purposes. Chapters 6 - 8 discuss 
the specific media processing technologies that are developed in video, 
audio, and text domains. Multimodal processing, which is designed to 
mitigate the error that is inevitable with single modal processing, is 
discussed in Chapter 9. 

III. Case studies: Chapter 10 reinforces the concepts of video processing 
through illustrative examples, and provides details about existing solu-
tions. Practical issues are brought to light through presentation of a 
detailed case study including a system supporting rapid content queries 
on a 50,000 hour broadcast television archive spanning 10 years and 
supporting a wide range of streaming media types for different 
applications. Chapter 11 provides a review of currently deployed Web 
search engines and identifies a few trends in the field to provide a 
sense of future directions. 
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1 Video Search 

 

1.1 Introduction 

 
Today’s World Wide Web is truly a video Web. Millions of video clips are 
available to users instantly thanks to widely available broadband IP net-
works, low-cost storage and mature digital video delivery technologies. 
The content of this video runs the gamut from skateboarding antics cap-
tured on mobile phone cameras up through graduate level university lec-
ture series on computer science. On the commercial entertainment side, all 
major broadcasters and movie studios have on-line strategies which range 
from a focus on promoting traditional distribution channels through releas-
ing primetime programming through the Web to capture an emerging 
demographic who increasingly turn to their laptops for video entertainment 
instead of their televisions. 

Although Internet video systems have made great strides, television still 
provides the highest quality digital video available to consumers on a daily 
basis at a level of quality far beyond that of traditional best-effort Internet 
video streaming. On-line high definition (HD) content is still a novelty. 
Cable, direct broadcast satellite, and over-the-air digital broadcast are ma-
ture technologies providing HD quality entertainment to millions of con-
sumers today, and Internet protocol television (IPTV) is emerging to pro-
vide more functionality and provide increased convergence with existing 
Web technologies. High capacity digital video recorders allow consumers 
to easily capture many hours of content for viewing at their convenience. 
An increasing array of set-top devices and smart TVs with IP connectivity 
provides access to the wealth of Web video (e.g. expatriates can view news 
from home in their native langue) via streaming or on demand. Closer to 
home, consumers can browse their videos and photos captured from their 
digital cameras or purchased on line and archived on their home network 
server. 
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The video Web extends beyond fixed appliances to mobile devices 
which support fully functional browsers and media players. Battery life 
and user consumption contexts may limit viewing of long-form content, 
but specially designed short-form content provides valuable entertainment 
for opportunistic consumption scenarios such as waiting for a late bus. 

This dazzling array of options for access to high quality video anytime, 
anywhere provides opportunities for service and technology providers who
can develop services and tools to help users manage their media experi-
ence and locate content of interest from the vast ocean of irrelevant or even 
repulsive material. Service providers plan to build universal three-screen 
services to allow users to seamlessly switch from TV to PC to mobile 
viewing. In fact, three screens are not enough to encompass all of today’s 
consumption scenarios and the term “any screen” is used to include per-
sonal media players, portable gaming devices and others such as Internet 
connected picture frames. 

Given the potential impact of technological breakthroughs in video ser-
vices, it is not surprising that there is no shortage of academic and indus-
trial research groups focused on this task. Further, successful solutions re-
quire an interdisciplinary approach, drawing from diverse fields including 
information retrieval, natural language processing, data mining, machine 
learning, multimedia databases, as well as speech, audio, image and video 
processing [Haupt05]. Data visualization, user interface design, human 
computer interfaces and the consideration of social aspects of media con-
sumption and interaction such as rating, tagging and recommendation are 
of equal or perhaps greater importance than the media processing tech-
nologies. Improvements to the start of the art of video search can draw 
from a broad base indeed. 

1.2 Addressing the Opportunity 

Realizing that inexpensive storage, ubiquitous broadband Internet access, 
low cost digital cameras, and nimble video editing tools would result in a 
flood of unorganized video content, researchers have been developing 
video search technologies for a number of years. The recent trends in digi-
tal video creation and delivery technology have brought the need for such 
tools to the forefront. The computing technologies contributing to this 
flood are also available to the tool builders to help provide a lifeline to 
Web video viewers. Once-impractical media analysis technologies are be-
ing applied to large archives of video content to extract metadata to aid 
search. The social aspect (e.g. incorporating popularity of pages into rank 
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calculations), initially overlooked and in-fact largely irrelevant due to lack 
of critical mass, provided a breakthrough for text search engine technol-
ogy. For video media, the exploitation of user tagging and recommenda-
tion engines is similarly providing a much needed boost for video search. 

While great advances in video search have been made and today’s video 
search engines provide a valuable service to users, the task of information 
extraction from video for retrieval applications is challenging; providing 
opportunities for innovation. This book aims to first describe the current 
state of video search engine technology and second inform those with the 
requisite technical skills of the opportunities to contribute to the develop-
ment of this field. 

Today’s Web search engines have greatly improved the accessibility and 
therefore the value of the Web. The top portals prominently feature search 
capabilities and most have gone beyond text search to include image 
search and even video search, though the latter on a limited basis.  A 
number of smaller companies have begun to offer more sophisticated 
media search features. Academic research groups have been actively 
developing algorithms and prototypes in this area for over a decade; 
incorporating and advancing previously existing constituent technologies. 

Technology evolution has set the stage for rapid growth of video search 
engines: research and prototyping has been underway for several years, 
broadband access is ubiquitous, streaming media protocols and encoding 
standards are mature. Disk and processor cost reductions are making it 
possible to store and index large volumes of digital media and create 
indexed on-line archives. Market forces such as the emergence of IPTV 
and mobile video services and the growing acceptance of digital rights 
management technologies are fueling these trends. 

Most media search systems rely on available metadata or contextual 
information in text form. Also, surrounding text or anchor text from links 
to the media are used to infer something about its content and, in some 
cases RSS feed descriptors point to media and include descriptive 
metadata. While these information sources are valuable and should be 
exploited, they are limited because they are typically brief, high level and 
subjective. 

Therefore the current focus of media indexing research is to develop 
algorithms to exploit the media content itself as much as possible to 
augment available metadata. In some cases, the media may contain 
associated text streams such as closed caption or song lyrics. By extracting 
and operating on these streams, a textual representation of the dialog is 
obtained and existing text information retrieval methods can then be 
applied to retrieve relevant media. Speech recognition can be employed to 
create an approximation of the transcription, and techniques such as video 
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optical character recognition can also be used to generate a textual 
representation of the media content. Although these technologies are 
inherently error prone, they have been used with success for indexing 
applications. Advanced speech retrieval systems use phonetic search to 
deal with the “out of vocabulary” problem and maintain alternative 
hypotheses in the form of lattices to boost recall. 

Media retrieval that goes beyond the textual media component is more 
complex because the basic media features are not well defined and may not 
scale well for large archives. Further, formulating queries may not be as 
simple as typing a keyword. However systems have been designed to, for 
example, retrieve images similar to a given image (query by example) or 
retrieve images based on a specification of color or shape. For navigating 
video retrieval results, techniques such as video skimming or mosaicing 
have been proposed. 

This book takes a practical approach with the goal of bringing 
researchers up to date on the state of the art in multimedia search 
technologies and systems. Part of the presentation will follow a logical 
flow from content acquisition, analysis to extract index data, data 
representation, media archival, retrieval and finally rendering results in a 
Web-based environment. Each of these major functional components will 
be outlined, and particular emphasis will be given to automated content 
analysis techniques since this is critical for operating video search engines 
at scale, and it presents on-going research challenges. To give the readers 
an understanding of the issues involved, individual media processing 
algorithms operating on text, audio and video will be addressed including: 
text alignment, case restoration, entity extraction, speech recognition, 
speaker segmentation, and video shot boundary detection. Additionally, 
the value of operating on multiple media components simultaneously will 
be illustrated by examining multimodal segmentation techniques. The role 
of media segmentation in improving relevance ranking for long-form 
content will be discussed. 

In addition to media processing, index representation issues using XML 
and media archival systems will be presented. The relation between 
indexing, summarization and media adaptation for mobile devices will be 
discussed. Challenges encountered when building Web-based user 
interfaces for browsing indexed streaming media will be addressed.  

In parallel with the functional discussion, a historical perspective will be 
provided, and relevant work will be cited from both academic and 
industrial sources. Background information such as digital media encoding 
and streaming standards and information retrieval will be given to allow 
the book to stand on its own. 
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Application areas vary widely, and the applicability of media search 
techniques is limited to certain domains. For example, video from Web 
cams is quite different from broadcast television content. The book will 
make this clear, pointing out techniques that are suitable for different 
levels of structure or different quality levels of the source material. 

Practical issues will be brought to light through presentation of detailed 
case studies including a system supporting rapid content queries on a 
50,000 hour video archive spanning 10 years of broadcast television and 
Internet video. 

1.3 Classification of Web Video Sites  

As users browse the Web, they are likely to encounter video on almost any 
site. If we focus on the sites that appear to be video portals or claim to of-
fer video search, we can begin to discern several categories of video search 
sites. To complicate the matter, there are hundreds if not thousands of such 
sites, and of course the Web is evolving rapidly, with business models and 
content presentation strategies in a constant state of flux. Some Web desti-
nations are amalgams of several differing approaches. In spite of this, in 
this section we attempt to point out a few general classes of video Web 
sites that users may encounter and that employ some form of video search 
capability.  

1.3.1 Content Originators and Traditional Broadcasters  

Examples of origin content Web sites include major TV networks 
NBC.com, affiliates WXYZ.com, major league sports (MLB.com™) as 
well as an emerging class of Internet-centric producers such as Rocket-
boom™ and CNet™. Content on these sites is typically from a single 
source, but due to co-ownership of content, the user may observe several 
different “brands” such as television network call letters often owned by 
the same company. Content is usually posted to the Web after it has aired 
with the business intent to extract additional advertising revenue from the 
content. However, we are seeing a trend to simultaneous release of content 
on the Web and on traditional distribution mechanisms. A second goal is to 
generate more viewers for the next episode to be aired. Going forward, the 
affiliated local TV stations may become disintermediated and suffer reve-
nue loss as viewers move from the channel based consumption model and 
get the content directly from the national “broadcaster.” Network affiliates 
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post local news and other content, and may receive content from the net-
work for their site. 

1.3.2 Aggregators 

Sometimes called “Internet Broadcasters,” aggregators act as centralized 
repositories that give users a wider range of content sources, with the goal 
of providing content providers with more viewers for their content. Sam-
ples include Brightcove™, ROO® Media and the FeedRoom™. These sites 
can be “white labeled” and branded by others such as broadband Internet 
service providers so users may not recognize these names.  

A second, more widely recognized class of aggregators includes 
MSN™, AoL™, Google™ and iTunes™. Business models vary widely 
and include rental, purchase, advertising, and subscription. The primary 
access method is HTTP streaming, but some sites also offer higher quality 
video via managed download. 

1.3.3 Download 

Movie and video download sites such as MovieLink, Akimbo, and Cine-
maNow support search and allow users to rent movies. The media is good 
quality and is typically downloaded to local storage using a download 
manager which must be installed on the users’ local machine. In addition 
to managing media file transfers to local storage, the client supports DRM 
which prevents copying the content and enforces the business rules for 
rental periods (e.g. keep for up to 30 days, play for 24 hours.) 

1.3.4 Sharing 

In addition to sites featuring professionally produced video, there are a 
large number of sites designed for sharing user generated content (UGC),  
or more precisely, “user contributed content” (UCC). The most widely 
known of these is YouTube™ which was purchased by Google™ for 
$1.6B in stock in 2006, however there are many others in use. In some 
cases these are not much more than network storage, but most add fea-
tures such as transcoding to a common format, entry and search of author-
supplied metadata, social tagging, and even e-commerce. (e.g. Putfile, 
Vsocial). The content on these sites is mainly consumer generated such as 
video blogs, but may include a range of qualities and genres. Unfortu-
nately it may also include pirated copies of copyrighted material as well. 
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In addition to the aggregators, video download and video share sites, the 
traditional search engine model involving Web crawl for content discov-
ery is evident. However, blind crawling has taken a back seat to feed 
based content pull using various syndication formats which describe the 
media at a high level via XML. Also, top search sites now cross-index to 
broaden coverage (e.g. Google™ video results will appear in MSN™ 
searches.) There are hundreds of Podcast search sites which offer none of 
their own content, but rather direct users to a broad range of content pro-
viders. 

1.3.5 Application Specific 

Vertical search sites that cater to a specific audience or to a narrow range 
of source content may include more structured metadata since the source 
of video is more controlled. For example, MLB.com™ offers video con-
tent from baseball games that have been highly annotated with detailed 
metadata indicating the player, the game situation, the stadium, etc. All of 
this data is accessible using an HTML forms interface to create very spe-
cific queries. Other sites such as IMDb or TVGuide® focus on video 
metadata such as movie information or guide listings, but may only con-
tain preview clips rather than the full video content. In some cases, there 
is very little video available at all, and the sites may contain only related 
media such as photos of actors, box art, etc. The goal of these sites is to 
generate rentals or purchases in the case of movie sites, or to plan TV 
watching or schedule TV recording. On the other hand, the Internet Ar-
chive has a long history of offering both metadata and video for content in 
the public domain, or with very liberal copyrights. 

1.3.6 Other Video Systems 

There are an increasing number of IP applications for viewing Internet TV 
such as Joost™, or Miro™ which attempt to organize Web video feeds as 
channels whether they are in fact live streams or published as feed based 
media files. Video search is a key element for content selection, along 
with other means such as promotional placement or popularity rankings. 
Other video search applications may offer Web-based front ends, but re-
quire subscription. Media monitoring services allow subscribers to search 
and browse content as it was aired for various purposes including adver-
tising verification, and corporate public relations. Media asset manage-
ment (MAM) and digital asset management (DAM) systems are used for 
“in-house” production and archiving applications. These include work-
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flow automation and may support Web-based distribution and monetiza-
tion features, but at a minimum include a Web-based UI for administra-
tion, asset browsing and retrieval using metadata search. 

1.4 Classification of Video Sources 

As we discuss video search, it is important to keep in mind that the nature 
and quality of video varies widely depending on the application. The value 
of video can be difficult to judge; we can assess this on many dimensions
such as image quality, or more subjective aspects such as educational, en-
tertainment or historic value. Cost is more quantifiable, in fact, we can 
think of a “production cost spectrum” as shown in Fig. 1.1, where level of 
effort or cost of production vary from almost nothing to perhaps thousands 
of dollars per minute of final product for broadcast television content. Ma-
jor motion picture costs can run even higher, particularly if we factor in the 
cost of promoting the project. Clearly, this huge range in content value has 
significant implications for Web search engine systems – it affects the con-
tent, quality, encoding, and availability of metadata and affects the degree 
to which automated methods can be employed to generate additional meta-
data to create index data. 

 

  
Fig. 1.1. Video production costs vary widely depending upon the application. 
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1.4.1 Webcams / Security 

At the low end of the video production cost spectrum is content from 
automated cameras such as security or Webcams. These systems typically 
have some level of operator control, but the operator controls a large num-
ber of cameras, often from a remote location. As a result, they rely on 
automatic gain control (AGC) and are often oriented poorly with respect to 
available natural lighting. Optics and processing circuitry are low cost, re-
sulting in poor imagine quality. Often the effective frame rate for these 
systems is reduced, perhaps even extremely so – to on the order of one im-
age saved per minute. There is typically little or no camera motion, al-
though some panning systems may be employed, and some views, such as 
from traffic cameras, may be affected by wind causing undesirable camera 
oscillations. 

1.4.2 Video Telephony / Teleconferencing 

Video telephony typically employs low cost terminal equipment, and re-
lates to search when we consider video-mail systems. Semi-automatic sys-
tems are available for video conferencing that may include automated 
camera controls to follow the most active speaker, or remote and local 
camera control using a motorized pan, tilt, and zoom. Higher end confer-
encing systems feature high definition cameras and monitors, but image 
quality still suffers from poor room lighting conditions and lack of camera 
operators. 

1.4.3 Industrial / Academic / Medical 

Specialized systems for machine inspection for manufacturing quality con-
trol can run 24 hours a day, but much of the video is not stored. Video 
from ultrasound or other medical diagnostic equipment can be costly to 
produce due to equipment costs and skilled technicians or staff required. 
Remote sensing (satellite or high altitude reconnaissance) video may be 
very high resolution, and include telemetry data. Like other scientific ap-
plications such as microscopy, this video may be largely two dimensional, 
with little depth. 
 



10      Video Search  

1.4.4 User Generated Content 

Perhaps the lowest production cost for any manually created video is re-
ferred to as “user generated” content such as from mobile phone capture or 
from consumer-grade digital cameras. The cost of entry for these systems 
is miniscule – in some cases wireless service providers give users camera 
phones for free with a subscription. Of course, the cost per minute of video 
is related to the service charges, but for digital cameras, there is essentially 
no cost after the camera is purchased. While most users simply share or 
perhaps store videos in their personal media collections, some will go the 
next step and edit the clips into more palatable presentations. Free editing 
tools are available for both Windows and Mac platforms. The learning 
curve is very short and users can easily add transitions, titles, etc. Video 
editing is one of the most resource intensive applications, but most recently 
purchased PCs are up to the task. We are also seeing the emergence of on-
line editing tools which remove the requirement of a powerful client PC 
since the editing is done on the server. Again, the cost per minute of pro-
duced video is low, but this assumes that the authors’ time invested in edit-
ing the video is not valued. Video Blogs or Vlogs are typically amateur-
produced content on a recurring basis and published to the Web, often with 
text commentary and these also fall into this category. 
 

1.4.5 Public Access and Government (PEG) Content 

In the US, local governments and community organizations such as high 
schools are given access to one or more cable channels to broadcast events 
for the benefit of the community and for educational purposes. Usually the 
production staff are not video professionals, and may even be students of 
broadcasting. The equipment may be better than consumer-grade, but it is 
semi-professional at best. This keeps costs low, but between this and the 
lack of experienced staff, it results in low quality output. 
 

1.4.6 Enterprise Content 

Corporations are increasingly using video as an additional means of em-
ployee communications as well as for training, and public relations pur-
poses. The production may be outsourced or handled by a dedicated group. 
The content is produced using semi-pro or pro equipment (also known as 
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“Pro A/V”) but often with a small staff serving multiple roles in the pro-
duction process. 

1.4.7 Rushes, Raw Footage 

Professionally produced video relies on a formal workflow process, one 
stage of which involves creating several shots of each scene. The footage 
from this stage of the process serves as the raw material for the editing 
process. The quality is usually good, since professional grade cameras and 
good scene lighting techniques result in low noise images, and professional 
camera operators know to avoid the mistakes made by armatures (rapid 
unstable camera motion, automatic gain control artifacts, etc.) There is of-
ten a 10 to 1 ratio or higher of this content to the final product. 

1.4.8 News 

National news is expensive to produce and is typically of high technical 
quality, but due to demanding production schedules and live coverage, as 
well as the lower production budgets available for local news production, 
some artifacts may be present in the output. In fact, in some cases broad-
casters may use low quality video from low bit rate links for feeds from 
extremely remote locations. 

1.4.9 Advertising 

Promotional video takes a wide range of forms, from the familiar 30 sec-
ond spots all the way up through one hour infomercials to 24 hour shop-
ping channels. In addition to marketing, public relations groups in corpora-
tions use video as an effective tool to get their message out. Archives and 
databases of advertising content are used for competitive analysis by cor-
porations. While TV viewers loathe most ads, some have entertainment 
value, and the notion of targeted ads or telescoping where interested users 
interactively delve deeper into ads of interest may reduce the stigma of TV 
ads somewhat. 

1.4.10 Episodic TV Programming 

This category includes primetime entertainment programming, comedies, 
dramas, game shows, soap operas, etc. Within this category, there is a 
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range of production costs with the assumption that better programming 
costs more, but generates more viewers and therefore more advertising 
revenue. Increasingly, we find that episodic content is made available via 
DVD for purchase (generally released such that only the previous seasons’ 
episodes are available.) Content may be funded by subscription, publicly 
subsidized, or commercial – in which case the narrative flow will be inter-
rupted with commercial breaks. For most commercial TV news and epi-
sodic programming, the entire program format and sequencing is driven by 
the placement and duration of commercial messages. 

1.4.11 Feature Films 

Again, there is a range here from independent (“indy”) films or documen-
taries which may have a very low budget, all the way up to Hollywood 
movies such as Titanic which cost $200M or about $1M/per minute. In ad-
dition to major motion pictures for theatrical release, there is the second 
tier, with somewhat lower associated costs, such as made-for-TV movies 
and movies released on DVD-only. It is interesting to note that “digital 
cinema” is being developed for digital distribution and projection of mov-
ies, but the expensive installed base of film projectors as well as other fac-
tors has slowed its deployment. 
 

1.4.12 Content Value 

Within many of these types, there is a range of purposes: to inform, to en-
tertain, and to persuade. The content reflects on its creators as well as its 
intended audience, their culture and value systems. Continually, creative 
thinkers strive to build novel experiences for audiences. Therefore these 
general classes should be understood to be only approximate, to give the 
reader a flavor of the range of video material encountered, and to provide 
an appreciation of the scope of the problem domain for video search en-
gines. 

Although we can estimate production costs for these content types, es-
timating the value for the user is more difficult. Security footage is largely 
valueless except for rare instances when a criminal act is captured, and 
then the value can have enormous impact. Home video content may be 
quite valuable for immediate family members, but of little value for any-
one else. If a person gains celebrity, then video from their childhood may 
be of great interest for large audiences. News archives have incalculable 
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historic value. In general terms, we may assess a searchable video collec-
tion on these merits: 

1. production cost and percieved value of the contentl; 
2. size and breadth of coverage of the content archive; 
3. size of the audience interested in the content; 
4. motivation for search (entertainment, research, forensic, etc.); 
5. degree to which the content is accessible (on line, either open or 

restricted); 
6. video quality (resolution, bit rate). 

 
It is also important to consider the value of automated indexing systems, 

and here we draw a distinction between using media processing to derive 
information about the video contents and using manual methods to create 
this data. Even though it may be of great value to spot a terrorist in 10,000 
hours of airport security camera footage, if there are no reliable algorithms 
to perform this search, then we cannot realize this potential value. Also, 
manually created metadata may be available to different degrees for each 
of these content types either via logging production data (e.g. the text of 
the titles typed into a consumer video editor) or by annotating post-
production information such as with Major League Baseball statistics. For 
manually extracted data, a special purpose database is constructed, while a 
search engine must derive common tags from a wide range of content 
sources – and currently this metadata normalization is not a fully auto-
mated process. High value content benefits less from automated media 
logging or metadata extraction while for lower production budget content, 
these automated methods are more valuable since manual labeling is not 
practical. Since the value of the content falls off at lower production costs, 
the center of the production cost spectrum, semi-professional or enterprise 
content, represents an area of opportunity for video systems research 
[Chang02]. 

1.5 Challenges of Video Search 

 
Searching requires browsing sets of candidate results. Video is a continu-
ous (or linear) medium: if paused, only a single frame remains, audio is 
lost. Text is displayed in a more parallel fashion and can therefore be 
browsed easily. Video storage and transmission requirements are several 
orders of magnitude greater than those for text. Textual features (charac-
ters, words) are well defined, can be efficiently encoded, and are limited in 
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number. Video features (edges, colors, motion) and acoustic features 
(pitch, energy) are less well-defined, computationally expensive to extract, 
and bulky to represent. In fact, there is little consensuses on which features 
are best for a given application.  Furthermore, users can formulate textual 
queries easily using a keyboard so that, to a first approximation, the infor-
mation retrieval problem reduces to a symbol look-up (i.e. find me the 
documents containing this word). For video databases, the query-response 
cycle is cross-modal (enter text, retrieve video). Query by image content 
involves building a query by specifying image or video attributes perhaps 
with a graphical tool which is beyond the patience limits of the typical user 
[Flick95]. Query by example or relevance feedback methods are easier to 
use but require some seed search to bootstrap the process. 

Comparing some of the issues faced by video search engine systems to 
their analogs from the text domain sheds light on the nature and scope of 
the challenges encountered. 

 

1.5.1 Acquisition 

The term invisible Web or hidden Web refers to Web resources that are not 
easily indexed by Web search engines. Search engines use crawlers (also 
called spiders) to locate content for indexing by following links that they 
encounter in each page that they parse. However, instead of maintaining 
large collections of HTML files, many sites generate HTML pages dy-
namically from content stored in XML files or in relational databases. The 
content may be exposed only if users search using a Web form, an action 
which crawlers cannot easily mimic.  Another problem for crawlers arises 
from sites that require user registration and authentication in order to ac-
cess content.  Estimating the size of the invisible Web is obviously diffi-
cult since by definition the content cannot be seen, but it may be orders of 
magnitude larger than the surface (visible) Web.  There are also socioeco-
nomic aspects to this issue since surface content is dominated by commer-
cial enterprises and is funded largely by advertising, while hidden Web 
content is often premium, academic, etc. Some would go so far as to dis-
miss the invisible Web content entirely by saying that since users only use 
search engines to locate content then it does not matter if content exists out 
of the reach of their favorite search engine.  

Although the scale is not easily quantifiable, as far as users’ expecta-
tions are concerned, the phenomenon of invisible Web is more severe for 
video than for text. There are cases where Web pages contain links directly 
to static video files, but this is the exception rather than the norm. Video 



1.5 Challenges of Video Search      15 

content is typically accessed through a player with complex scripting used 
to specify the video asset. Due to the size of the media objects and com-
plexities of maintaining news content, asset management or publishing 
tools are typically used which are linked to databases. In some cases the 
publisher may have rights to publish the content only for a limited time. 
Professionally produced video entails high production costs and sites re-
cover the investment through advertising or subscriptions. Video advertis-
ing via forced playlists also foils search engine crawlers.   Video protected 
by digital rights management (DRM) precludes content based analysis. At-
tempts by search engines to circumvent any of these revenue-persevering 
schemes will not be received favorably by the content owners. Consumer 
produced content posted on sharing sites, on the other hand, is often open 
to all viewers for free and sites may have mechanisms to generate perma-
nent links to videos. Crawlers may encounter these links on other sites and 
the links point back to a full page rather than directly to the video file. 
Stream saver or downloader tools have been developed to work around 
these issues. 

Stale links arise from content being moved or deleted after a crawler has 
indexed the content. While this is a problem in both the text and video do-
mains, it may be more likely for video files because large file sizes or 
rights issues may lead sites to remove content after a certain period of 
time. 

1.5.2 Media File Formats 

Considering parsing, one can build a very useful text search engine by 
dealing with only a single content source file format: HTML. As an after-
thought, one could add support for Adobe PDF, Microsoft Word and per-
haps one or two more, but these formats represent such a tiny fraction of 
the total available Web documents that users may not even notice their 
omission. The HTML format is designed to be easily parsable and al-
though authors may create mal-formed HTML, there are many available 
error-tolerant parsers to choose from. Video, on the other hand, comes in a 
wide variety of formats and it is not clear which format is the most popular 
at any given time. New formats emerge, rise in popularity, and then may 
be knocked from the top spot as still newer formats gain popularity. Keep-
ing up with these developments is a challenge for video search engines. 
Video container file format parsers and decoders are complex and often 
brittle so that relatively minor deviations from the video encoding standard 
may cause parsing failure. Decoders may be able to deal with only a subset 
of the permissible video encoding parameter space or only handle certain 
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“profiles” (e.g. MPEG-4 simple profile) and may not be able to deal with 
others. Solutions have been built to address these issues but these solutions 
are complex to configure, administer and can be costly to operate at scale. 

1.5.3 Data Transport 

The data transport protocols for media are more diverse than for Web text. 
Again, crawlers need only implement the HTTP in order to cover most of 
the Internet content, with FTP being a distant second. In fact, there are 
many HTTP stacks implemented in many programming languages. HTTP 
streaming for video is gaining popularity, perhaps due to firewall issues, 
but video servers frequently use RTSP running over UDP to maximize 
throughput. UDP is a good choice for real-time video viewing, but the in-
herent possibly lost data packets will cause problems for automated index-
ing systems. Search engines for broadcast monitoring applications may 
need to grapple with ATSC or DVB access issues. 

1.5.4 Browsing 

When generating search results, search engines represent documents by 
metadata such as title and URL, but they also include a brief summary or 
extract to enable users to quickly determine if the document is relevant to 
their query. In the text domain, the operation of extracting representative 
text segments is straightforward. Regular expressions can be used to effi-
ciently identify text segments matching the user’s query terms, highlight 
them with markup, and to locate blanks between words to break up long 
sentences. More sophisticated processing can remove redundancy to form 
more meaningful extracts. In the video domain, extraction or summariza-
tion methods are not well defined and require complex video processing. 

The time required to preview video limits the total number of search re-
sults that a user is willing to tolerate viewing. Evaluating relevance of a 
particular document is more time consuming with video than in the text 
case. Neglecting HTTP site response time, text documents load within a 
second or two and users may be able to judge instantly if the page is worth 
reading, and if so, quickly spot-checking several points in the document is 
usually enough to determine if the document satisfies the query. For video, 
a much larger amount of data must be downloaded and buffered prior to 
start-up. After the video starts, the relevant content that the user is looking 
for is typically not in the first few seconds of playback. Video is normally 
consumed in a lean-back mode and so the content creators devote more 
time to lead-in material to pique the viewer’s interest. If a viewer attempts 
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to seek past this content, then re-buffering must take place, and it is 
unlikely that the desired location will be arrived at on the first attempt. The 
long lead time required to evaluate document relevance frustrates users of 
video search. 

1.5.5 Duplication 

Duplicate or near duplicate pages in Web search results can frustrate users 
as they repeatedly see pages that they have already rejected as being irrele-
vant to their query intent. In the text domain, duplication is trivial to detect 
and there are well accepted methods for determining document similarity 
(e.g. based on edit distance) that are reasonably efficient to compute in or-
der to detect near duplicates.  Duplicate videos in query results lists present 
even more of a problem for video search engine users. Videos take a sig-
nificant amount of time to start playing and the delay will be intolerable 
for users if they encounter duplicates in query result sets. Sometimes cues 
from metadata and thumbnails will be enough for users to determine dupli-
cations, but not always. Duplicates are common in the video search appli-
cations, since a single source of video, say a television broadcast, may be 
captured by several viewers and posted to numerous sites. Also, the same 
video may be broadcast repeatedly or at different times for different televi-
sion markets, so even if the recording time and broadcast channel of a cap-
tured video clip is available and accurate, that may not be enough to de-
termine if the content is duplicated.  Twenty four hour news channels often 
rebroadcast footage of breaking news and may intersperse this with new 
video as it becomes available. Video duplicate detection is an algorithmic 
challenge and proposed algorithms are computationally intensive. Often a 
duplicate clip is posted to sharing sites with differing metadata. 

1.5.6 Ranking and Indexing 

Text information retrieval including ranking and document indexing algo-
rithms are mature, and off-the-self solutions that perform efficiently at 
scale are available. Video indexing is an emerging technology and univer-
sally or widely accepted techniques are not available and may not operate 
with the scale necessary for practical Web video search. Often the algo-
rithms are domain-specific and cannot be applied to unknown arbitrary 
video content. 
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1.6 Advantages of Video Search over Text 

Given all these aspects which make video search more difficult than text 
search, together with the fact that text search engines are far from perfect 
themselves, it may be surprising that successful video search systems have 
been deployed at all. This may be explained by considering areas where 
video search is less problematic than text search.  

Although browsing video results sets is more time consuming than for 
text, the human visual system can process images more quickly than text. 
Therefore a first level of results set filtering can be nearly instantaneous. 
Of course this assumes that a reasonable set of representative key frames 
have been extracted and can be rendered quickly. Users can scan arrays of 
these images to quickly select potentially relevant video segments. Obvi-
ously this process is not without error since a single key frame cannot con-
vey all of the information from the video clip which is of course a se-
quence of frames. However, users can make reasonably accurate general 
assessments of the global nature of the video given a single frame. For ex-
ample, one can differentiate easily between broadcast television content 
and amateur video blog postings based on the quality and content of a sin-
gle frame, particularly if certain cues such as text overlays are present. 

1.6.1 Applications 

Another factor in video search engines’ favor relates to the application ar-
eas and user expectations. Often video search is used for entertainment 
purposes in which an irrelevant video may be less of a problem than in the 
text domain. Text search can also be used in a less task-oriented, more en-
tertainment-like mode where the user meanders in different directions than 
the original search topic. With video search, however, the user fully ex-
pects that consuming the results of the search will take time given the lin-
ear nature of the media. In this sense video search is a more forgiving task 
than text search and users may be more tolerant of error in some applica-
tions. On the other hand, applications including education or research are 
not error-tolerant and even entertainment applications will be improved 
given more accurate or personalized video search and some controlled 
semi-randomness in the results set can be injected if desired. Search activi-
ties can be classified into three broad categories: (1) browsing or exploring 
the collection; (2) finding an arbitrary video that satisfies the query; and 
(3) finding all relevant videos [Camp07]. 
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1.6.2 Metadata 

One further area where video search engines may have a slight edge over 
text search engines concerns metadata. Good quality video takes more ef-
fort and budget to produce than text documents and therefore video pro-
ducers may be more likely to take the time to include metadata descrip-
tions such as genre classifications, plot synopses, and keywords. In this 
sense, video search is more like book search. Note that this is not the case 
for video blog content and that as video acquisition and editing technology 
improves, it will be even easier for more, less diligent, users to create 
video content.  It is also true that documents such as books and journal ar-
ticles are time consuming to produce and similarly warrant the inclusion of 
abstracts, keywords and subject matter classification. 

1.7 Metadata vs. Content 

 
Metadata is “data about data,” or in this case “data about media.” Global 
metadata refers to the entire media assets and typically includes a title, au-
thor, copyrights, etc. While almost every video application supports global 
metadata in some form [DC03], for some applications additional sets of 
metadata may pertain to segments of the media – such as for news content 
were one segment may contain footage from a third party and copyrights 
may be more restrictive for that segment.  

1.7.1 Content-based retrieval 

Content-based retrieval involves the use of metadata that is derived (typi-
cally automatically) from the media streams and almost always includes a 
temporal attribute. Note that a transcript of the dialog is usually considered 
to be “content” and not metadata although it can be represented concisely 
in data structures similar to those that represent global metadata such as the 
description, and a text stream can be used for both consumption and navi-
gation. 

Most video searching systems rely on high level attributes accompany-
ing the video files for search. These typically include title, date, genre, and 
brief description. However the next generation of searching systems goes 
beyond metadata to search the content of the video. Content indexing not 
only provides a more accurate description of the media; it supports tempo-
ral information so that users can navigate to the desired segments of long-
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form video material. It is content indexing that enabled Web search en-
gines to excel since codifying and maintaining consistent document meta-
data is impractical, from both the engineering and social perspectives. 
Video search systems must leverage existing global metadata, incorporate 
any manually added detailed metadata or tags, extract additional detailed 
metadata automatically, and support the on-going addition of viewer sup-
plied metadata such as tags, ratings, comments, and popularity. 

1.8 Conclusion 

The amount of video content on the Web is growing rapidly as new tech-
nologies such as Internet protocol television (IPTV) and mobile video are 
deployed. Video search engines are being developed to enable users to take 
advantage of these video resources for a wide variety of applications in-
cluding entertainment, education and communications. However, the task 
of information extraction from video for retrieval applications is challeng-
ing, providing opportunities for innovation. 

All video is not created equal; there is a wide range in terms of quality, 
available metadata and content. We described some of the challenges for 
video search as related to text search, and introduced the notion that meta-
data plays a key role in the accuracy and effectiveness of video search. The 
metadata may accompany that content and be easily ingested for search, 
and powerful media analysis technologies may be employed to extract ad-
ditional, detailed metadata for search. Users may be participants in the 
metadata creation process through tagging and otherwise commenting on 
the video that they have viewed. Analysis of user activity can lead search 

 
 
 

engines to make implications about video content and quality or popularity.
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2 Video Data Sources and Applications 

 

2.1 Introduction 

To further illustrate the challenges and opportunities for video search, this 
chapter will address the nature, availability, and attributes of different 
sources of video data. Search engines leverage all available information 
relevant to media and this chapter will provide details about available 
metadata for different types of video including electronic program guides, 
content identifiers, video on demand packages, and syndication standards. 
We will also introduce representations of textual information associated 
with media such as transcripts, closed captions, and subtitles. The breadth 
of metadata sources is described at a high level, and more detailed infor-
mation is provided for selected domains including, broadcast television, 
digital video recorders (DVRs), consumer video, and Internet sources such 
as podcasts and video blogs. After media is published on the Web, addi-
tional metadata may accrue from social sources in the form of tags, ratings, 
or even user contributed subtitles, all of which can be exploited by video 
search engines to produce more accurate results. 

 

2.1.1 Evolution of Digital Media Metadata 

From planning, through production, editing, distribution, and archiving, 
metadata is used throughout the video life cycle to manage, locate, and 
track rights and monetize video content. Historically, in the days of film 
and analog video, the tools used for this process were primitive, consisting 
of handwritten notes with labels and numbering schemes for tapes. As 
video has gone digital, so has the metadata as well as the production and 
distribution processes. This migration is not totally complete: film is still 
the dominant archival format for some content classes and there are legacy 
archives in a range of tape formats both analog and digital. 
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2.1.2 Consumer Video Metadata 

On the consumer video side, the equipment costs and time scales are radi-
cally different. Even here, while photography has gone digital, and most 
cameras can capture video, digital camcorders have only recently begun to 
replace analog models. This move to digital consumer media capture has 
resulted in some limited benefits related to metadata. Looking at the file 
times of their personal media archives, consumers can tell the exact time 
and date of photos and videos that they’ve shot. However, the filename is 
typically only an obscure sequence number and the content of the media is 
only revealed when it is played. New devices, including camera phones, 
record each shot in a separate file, which is great for determining the time 
of the shot, but only adds to the problem of locating particular content due 
to the sheer volume of files created. In this respect, consumer video meta-
data is not much farther along than the pencil and paper days of video pro-
duction.  Some promising developments on this front include video cam-
eras that log start and stop to provide a shot index, support GPS (Global 
Positioning System) information as well as advances in consumer video 
editing packages that encourage the addition of titles and other metadata.  

 

2.1.3 Metadata Loss 

Metadata is of critical importance for search systems and it is important to 
capture all available metadata because in addition to the objective media 
parameters, good metadata tagging captures the subjective essence of the 
media. It is often how users refer to content (by title, actors, etc.) Today’s 
automated content analyses tools can augment this data, but cannot extract 
the high-level semantics reliably. Unfortunately, in many cases metadata is 
lost somewhere in the process from capture to delivery to end users. Video 
asset management systems preserve and manage metadata as well as the 
media throughout the content life cycle. The typical asset life cycle in-
cludes not only preproduction, editing / post-production, and publication or 
distribution but also archiving and reuse for future production cycles (see 
Fig. 2.1.) The problems for metadata integrity and preservation arise as 
media flows from one system to another in this process. The production 
systems typically are assembled over time from various vendors and may 
involve handoff of content between several organizations, each with their 
own policies and practices for metadata. 
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Fig. 2.1. Stages in the video content lifecycle. Metadata can be created and cap-

tured at each stage, but may not be preserved throughout the process. 

Shoot Edit Publish 

Archive Reuse 

Plan 

 
Convergence of the TV and the PC is underway, and has been for 10 

years or more, but the broadcast and Internet video communities still rep-
resent two distinct camps, and this has implications in the area of metadata 
standards. Having been designed for a medium that is international and on-
line by nature, the Internet standards are most accessible for search engines 
and are based on technologies such as XML that are familiar to Internet 
engineers and application developers. Today, the concept of converged 
services in the telecommunications industry refers not only to TV and PC 
but also includes mobile handsets and connotes seamless access to media 
services across multiple devices and network connection scenarios. IPTV 
and the move to file based video production workflows will help bring the 
IP and broadcast communities closer together. 

 
 

2.1.4 Metadata Standards 

Metadata standards have emerged to facilitate exchange of media and its 
description between organizations and among systems and components in 
the video production, distribution, and archiving processes. Unfortunately, 
different industries, communities and geographic regions have developed 
their own standards designed and optimized for their own purposes.  
Therefore a truly universal video search engine must deal with a wide 
range of source metadata formats. Table 2.1 lists some of the metadata 
standards and the responsible bodies that have a bearing on video search 
applications, but there are many others such as ATSC (e.g. PSIP), ETSI, 
DVB, and ATIS/IIF. A detailed treatment of broadcast metadata is beyond 
our scope but we will introduce some of the metadata systems and inter-
ested readers can consult the references for more information (e.g. 
[Lug04]), 
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Table 2.1. Representative metadata standards. 
Standard Body 
MPEG-7, MPEG-21 ISO / IEC – International Standards Organization 

/ International Electrotechnical Commission, Mo-
tion Picture Experts Group 

UPnP Universal Plug and Play Forum (MPEG-21 
DIDL-Lite, etc.) 

MXF, MDD SMPTE – Society of Motion Picture and Televi-
sion Engineers 

AAF AWMA – Advanced Media Workflow Associa-
tion 

ADI, OCAP CableLabs® (includes VoD) 
TV-Anytime Industry Forum, now ETSI – European Tele-

communication Standards Institute 
Timed Text W3C, 3GPP, (MPEG) 
P/Meta, BWF EBU – European Broadcasting Union 
Dublin Core DCMI – Dublin Core Metadata Initiative, US 

NISO Z39.85, ISO 15836, OAI 
RSS Harvard 
Podcast Apple 
MediaRSS Yahoo 
ID3 Informal 

 

2.1.5 Dublin Core 

The Dublin Core Metadata Initiative defines a set of 15 elements used for a 
wide range of bibliographic applications [DC03] and many media meta-
data systems incorporate the element tag names or a subset of the core 
elements. (The name refers to the origin of the initiative at the Online 
Computer Library Center workshop in Dublin, Ohio in 1995.) The core 
elements are easily understood, and are widely used in media metadata ap-
plications such as RSS Podcasts and UPnP item descriptions through the 
incorporation of XML name space extensions. Also, the Open Archives 
Initiative which promotes interoperability among XML repositories util-
izes the DC element set [Lag02].  

The core elements are not sufficient for most applications and can be 
thought of as a sort of least-common-denominator for metadata. For exam-
ple, the Dublin Core defines a “date” element, but media applications may 
need to store multiple dates: such as the date that original work was pub-
lished, the date performed, the date broadcast, etc. The Dublin Core ele-
ment set has been extended (and referred to as the Qualified Dublin Core) 
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to address this [Kur06]. There are three XML namespaces that define DC 
encoding (Table 2.2). 

 
Table 2.2. Dublin Core metadata and namespaces. 

Elements Namespace 
The 15 Dublin Core Metadata Elements 
(DCMES) 

http://purl.org/dc/elements/1.1/ 

DCMI elements and qualifiers http://purl.org/dc/terms/ 
DCMI Type Vocabulary http://purl.org/dc/dcmitype/ 

 
 
 

2.1.6 MPEG-7 

MPEG-7 is an ISO/IEC specification titled the “Multimedia Content De-
scription Interface” with a broad scope of standardizing interchange and 
representation of media metadata from low-level media descriptors, and up 
through semantic structure [ISO/IEC 15938]. Further, content manage-
ment, navigation (e.g. summaries, decompositions) as well as usage infor-
mation and user preferences are covered. Unlike some other metadata 
standards, MPEG-7 is not industry specific, and it is highly flexible. There 
are over 450 defined metadata types, and many type values can in turn be 
represented by classification schemes [Smi06]. To promote a wide range 
of applications and to allow for media analysis algorithm development, 
MPEG-7 does not specify how to extract or utilize media descriptors, but 
rather it focuses on how to represent this information. For example, visual 
descriptors include contour-based shape descriptors for representing image 
regions, but no assumptions are made about preferred image segmentation 
algorithms. MPEG-7 components are used in other metadata systems such 
at TV-Anytime and MPEG-21. 

 

2.1.7 MPEG-21 

MPEG-21 defines packages of multimedia assets and promotes interopera-
bility of systems throughout the asset value-chain [ISO/IEC 210000.] The 
concept of a digital item (DI) is introduced as well as a digital item decla-
ration language (DIDL). MPEG-21 Digital Item Identifiers (DII) serve the 
purpose of uniquely identifying content, and incorporate the use of appli-
cation-specific identifiers (such as ISRC, see Sect. 2.3.6) rather than speci-
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fying yet another competing system. MPEG-21 is broad in scope address-
ing a broad range of practical issues encountered in monetizing media as-
sets such as DRM, and media adaptation for various consumption contexts. 

The concept articulated in the MPEG-21 Digital Item Adaptation (DIA) 
is particularly interesting for video search engine systems and services that 
are built around them. The ultimate goal is that of promoting “Universal 
Multimedia Access” (UMA) to allow content producers to create a unified 
media item or package and allow viewers to receive the content on any de-
vice at any time. While fully automating this process may not yield ideal 
results, the standard allows content creators to specify in as much detail as 
possible, the manner in which the content is to be adapted. Not only are the 
resources adaptable as would be expected, but also the descriptions of 
those resources are adaptable as well. Adaptation is possible at both the 
signal level (e.g. media transcoding) as well as at the semantic level. One 
aspect of adaptation involves the terminal capabilities such as available 
codecs, input/output capabilities, bandwidth, power, CPU, storage and 
DRM systems supported by the device. Beyond this, MPEG-21 supports 
adaptability for channel conditions, accessibility (for users with disabili-
ties), as well as consumption context parameters such as location, time, 
and the visual and audio environment. Of particular interest for the current 
subject of media metadata that we are considering is the MPEG-21 notion 
of “metadata adaptability.” Three major classifications are brought to light: 

1. Filtering – a particular application will use only a subset of all of the 
possible metadata available for a particular digital item; 

2. Scaling – reducing the size or volume of metadata as required by the 
consumption context (e.g. bandwidth or memory constraints); 

3. Integration – merging descriptions from various sources for the 
digital item of interest. 

MPEG-21 supports many more capabilites relevant for video services,  
such as session mobility. Interested readers are referred to [Burnett06] 
from which we have drawn to provide a breif introduction to this topic. 

The Universal Plug and Play (UPnP) specification defines a “DIDL-
Lite” which is a subset of the MPEG-21 DIDL [UPnP02]. This is an ex-
ample of the incorporation of multiple metadata specifications since the 
Dublin Core elements are also supported via XML namespace declarations 
in addition to the defined “UPnP” namespace which augments the DIDL-
Lite to form the basis of the specification. Further, this mechanism can be 
extended, for example, to include “vendor metadata” such as DIG35, 
XrML or even MPEG-7 [UPnP02]. 
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2.2 Essential Media Metadata 

 

2.2.1 Embed Global Metadata 

Some level of metadata is embedded within the media stream, either as a 
header for use in decoding or rendering, or as an additional logical bit-
stream multiplexed within the media.  In addition, metadata can be main-
tained in separate files that refer to the media file or collections of files 
(packages or channels) see Fig. 2.2.  

 

 
Fig. 2.2. Metadata is embedded with media, or stored externally. 
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2.2.2 Elementary Metadata 

There are several common media container formats in use on the Web to-
day, and search engine ingest systems can parse these to extract some basic 
information about the media. At a minimum, the container files indicate 
enough global information about the media to allow decoding applications 
to play the file (e.g. the number of media streams in the file.) Each stream 
has attributes such as bitrate, frame rate, spatial resolution, etc. Typically 
there is at a minimum an audio stream and a video stream, but there may 
be multiple media streams, e.g. multirate streaming uses several video 
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streams at different bitrates. The duration and image resolution informa-
tion are required for parsing and can be of some limited practical use for 
search engine systems for filtering search results (e.g. “find me videos with 
at least a 320 by 240 resolution and 20 minutes or more in length”). 

 The container formats typically support the inclusion of high level de-
scriptive information such as title, publisher, etc. This global media meta-
data can be extracted from open formats using available tools and used for 
indexing applications. This provides some very basic information for 
search engines beyond the typical filesystem attributes such as size and 
name, but the level of detail available falls short of providing a true de-
scription of the content itself. We can think of levels of depth of informa-
tion discovery about unknown media files as shown in Fig. 2.3. 

 

 
Fig. 2.3.  Depth of discovery of metadata from media files. 
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Fig. 2.4. Global metadata entry dialog for a single media file (Microsoft® 

Windows Media® Editor). 
 



2.3 Metadata for Personal Media Collections      31 

2.3 Metadata for Personal Media Collections 

2.3.1 Consumer Media Libraries   

Fig. 2.4 shows a typical user interface for authoring this level of metadata. 
In this example, these represent fields in the Content Description Object in 
Microsoft’s ASF specification [ASF04]. While these are five core attrib-
utes used by many Microsoft applications [Loomis04], ASF also supports 
an Extended Content Descriptor Object to include other name–value pairs 
and there is also a Metadata Library object for including more detailed in-
formation. Most formats support arbitrary name–value pairs but applica-
tions promote or require the use of standard attribute taxonomies. Also, as 
a practical matter, typical users are not aware of metadata unless the values 
are displayed by the applications that they use on a regular basis. Media 
players may make this visible through a “media properties” or “media 
info” dialog, but often this is not readily accessible from the top level user 
interface of the player application. However, with the emergence of per-
sonal media library manager applications, users become very aware of the 
metadata and may even be motivated to edit and maintain the data for their 
collections, but will certainly favor systems that manage this for them.  

 

 
Fig. 2.5. Metadata for personal media collection (Apple® iTunes®) including 

items with missing metadata. 
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A sample media library metadata view is shown in Fig. 2.5, in which 
users locate content by sorting and browsing or search. A subset of the 
metadata fields is shown and the interface allows additional fields to be 
chosen (overlaid menu in the figure.) However many of these fields are of 
little value for search (e.g. beats per minute) or are only suitable for spe-
cific classes of content (e.g. episode ID). As can be seen in the figure, not 
all fields are fully populated, and there are often inconsistencies in this 
type of data.  

Of course, all media library managers do not use the exact same set of 
metadata tags so if a media search engine were to ingest content using tags 
maintained in personal media libraries, it must perform translation or map-
ping of metadata tags. For example, Table 2.3 lists two major consumer 
media library applications tag names, and suggests a mapping. Note that 
metadata mapping, while trivial here, is typically much more difficult and 
in most cases shades of meaning are lost in this normalization process. 

Table 2.3. Media library mangers label attributes differently (only a few repre-
sentative differing tags names are shown; most tag names are the same). 

Windows Media Player 10 Apple iTunes 7 
Length Time 
Type Kind 
Mood N/A 
N/A Equalizer 

 
Libraries are maintained in persistent databases which may expose inter-

faces to allow other applications to interoperate. Alternatively, import and 
export of library data can be used for this purpose. For example, Apple’s 
iTunes exposes library data in a straightforward key–value XML format as 
shown in Fig. 2.6. 
 

 
Fig. 2.6. Media library metadata for a single asset (extract from Apple® 

iTunes® library XML format). 

<key>Kind</key> <string>MPEG-4 video file</string>  
<key>Size</key>         <integer>40761183</integer>  
<key>Total Time</key>   <integer>524864</integer>  
<key>Year</key>         <integer>2007</integer>  
<key>Date Modified</key> 
   <date>2007-05-17T20:48:13Z</date>  
<key>Date Added</key> 
   <date>2007-05-17T20:48:06Z</date>  
<key>Bit Rate</key>       <integer>127</integer>  
<key>Sample Rate</key>    <integer>48000</integer>  
<key>Release Date</key> 
   <date>2007-05-09T22:00:39Z</date>  
<key>Artwork Count</key>  <integer>1</integer>  
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2.3.2 UPnP Forum  

Media library managers typically monitor the local filesystem, or a set of 
specified folders for the addition of new media and maintain a database of 
extracted metadata from media file formats that they support. While it is 
possible for consumers to monitor collections of media on other computers 
in their home network, configuring file sharing can be cumbersome due to 
system incompatibilities and security configurations such as firewalls. The 
emergence of easy to use, low cost, high capacity network-attached storage 
devices promotes the concept of shared media storage. To enable ease of 
use and to foster interoperability of networked media devices, the comput-
ing, consumer electronics and home automation industries formed the 
Digital Living Network Alliance (DLNA) and the Universal Plug and Play 
(UPnP) Forum which defines a range of standards and defines the concepts 
of Media Servers and Media Renderers [UPnP02.] UPnP uses the Digital 
Item Declaration Language defined in MPEG-21 [DIDL01] and in particu-
lar defines a subset referred to as DIDL-Lite.  

 

2.3.3 MP3 ID3  

ID3 tags arose out of a need for organizing MP3 music files into libraries 
for so called “jukebox” applications. Note that ID3 is not part of the 
MPEG specifications, but rather it is a means of appending data to MP3 
files. ID3v2 supports not only global metadata, but also detailed metadata 
and even supports embedding of images. Beyond metadata related to the 
asset, ID3 supports application specific features such as encoding the 
number of times that a song has been played. As flexible as the ID3v2 
format is, the precursor ID3v1 was extremely limited and rigid. (However, 
this utilitarian simplicity resulted in wide adoption.) The fields used in the 
ID3v1 Tag are shown in Table 2.4, and include song title, artist, album, 
year, comment, and genre. The strings can be a maximum of only 30 char-
acters long and the genre is an 8 bit code referencing a static table of 80 
values. Later this was extended to 148, and in ID3v1.1, the comment field 
was shortened to 28 characters and a track number was added.  
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Table 2.4. A subset of the Dublin Core metadata elements and their analogs in 
popular media file formats. 

Dublin Core 
Elements 

Quick-Time Mobile MP4 MP3 ID3v1 Microsoft ASF 
base 

Title nam titl Song Title Title 
Creator aut,art auth Artist Author 
 alb  Album  
Date day  Year  
Description des,cmt dscp Comment Description 
Type   Genre  
Rights cpy cprt  Copyright 
    Rating 
 
 

2.3.4 3GP / QuickTime / MP4  

The QuickTime file format [QT03] was adopted for the MPEG-4 file for-
mat (MPEG-4 part 14) and is sometimes referred to by its file extension 
MP4. Quicktime also uses the extension MOV for a wide range of media 
formats. The 3rd Generation Partnership Project (3GPP) defined the 3GPP 
file format (3GP) which is essentially a specific instance of MP4 with 
some extensions for mobile applications, such as including support for 
Adaptive Multi-Rate (AMR) format audio. It is used for exchanging mes-
sages using the MMS protocols. Metadata tags including author, title and 
description are defined in asset metadata within a user data “box” (ISO file 
format structure segment) [3GPP, p.29]. In addition to these fields, a box is 
defined to store ID3v2 tags directly without translation or mapping re-
quired. 

2.3.5 Metadata Services  

In addition to parsing media files to extract metadata, personal library 
managers gather additional metadata from online repositories. The basic 
data flow is shown in Fig. 2.7. An application on the client reads an identi-
fier from the local media or, in this example, calculates a unique identifier 
based on the length and number of the tracks on a compact disk, and then 
requests additional metadata from a server using this identifier as a query. 
The response returned can include detailed up to date metadata and images 
of cover art (or box art.)  Library applications can also calculate signatures 
given a single media file, such as an MP3 file. The signature is used to 
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query a database of signatures to determine a unique content identifier. 
This form of content identification is sometimes called “fingerprinting” 
and it has been used successfully to detect copyright infringement on mu-
sic sharing services. User-generated content video hosting sites such as 
YouTube are notorious for hosting copyrighted content posted illegally by 
users. The sites take refuge from liability in the “safe harbor” provisions of 
the Digital Millennium Copyright Act [DMCA98], but are increasingly us-
ing fingerprinting to identify and remove copyrighted content. Fingerprints 
based on the audio component are useful for A/V applications as well – 
particularly in cases where users dub copyrighted audio into a video that 
they are producing. However, video fingerprinting systems are more re-
cently available. 
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Fig. 2.7.  Metadata services based on content identification. 

 
Providers of this class of media metadata services include Gracenote® 

(formerly CDDB), Freedb, and All Media Guide AMG (allme-
diaguide.com). For movies, the Internet Movie Database (IMDb) maintains 
a detailed collection of metadata for over 500,000 items (movies, TV epi-
sodes) and includes plot summaries, actors, and directors, in addition to 
typical metadata such as genre, rating, and title. JPEG images of “box art” 
are also available. The database is available for download for non-
commercial applications, and imdb.com provides some basic tools for que-
rying the database locally. Other entities such as AMG maintain similar 
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movie metadata databases and provide subscription based services for ac-
cess. Many of these services also maintain Web sites for end users to 
search and browse media metadata, some with a business model of driving 
sales of hard media (DVDs or CDs.) 

2.3.6 Content Identification  

Content identification is a critical component for these systems and several 
unique content ID (CID) methods have been developed for this purpose. 
Fingerprinting is still required for cases where the ID is not trusted, such as 
in user contributed video hosting applications, or for content systems that 
do not make use of IDs such as MP3 file sharing. Also fingerprinting sys-
tems use content IDs to link the signatures back to the source content 
metadata. Content identification is a general function and many standards 
incorporate some form of CID. In ISO, the TC 346/SC 9 group develops 
documentation identification standards such as ISBN, ISAN, and several 
others. 
 ISAN: The International Standard Audiovisual Number (ISO 15706) is 

a system for uniquely identifying an asset, independent of the broadcast 
schedule or recording medium. MPEG-2 and MPEG-4 have a field for 
ISAN and the SMPTE Metadata dictionary supports ISAN as an 
identifier/locator. The ISAN has a standardized length as does the ISBN. 

 UMID: Unlike the ISAN which is intended for the entire work as a unit, 
UMID Unique Material Identifiers (specified in SMPTE 300M) are used 
in Material Exchange Format (MXF) and can reference shots and even 
individual frames. Rather than being issued by an organization, UMIDs 
can easily be generated by camcorders in a manner similar to the way 
SMPTE timecodes are generated. Extended UMIDs go beyond 
identification and encode metadata such as the creation date and time, 
location and the organization. 

 ISRC: The International Standard Recording Code, ISO 3901, is used 
for sound and music video recordings and includes a representation of 
country of origin, recording entity (record label), year and a 5 digit 
serial number. 

 CID: This content identifier originated in Japan and is a product of the 
Content ID Forum or cIDf. The CID is designed to be embedded within 
the digital object, typically video or images. 

 CRID: TV-Anytime defines the Content Reference Identifier or CRID 
to uniquely identify content independent of its location or instance. It is 
used for EPG applications. While typically refering to a single program, 
CRIDs may also refer to groups of programs or segments of programs. 
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 ISWC: The International Standard Musical Work Code, ISO 1507, is 
intended to uniquely identify a musical work for rights purposes as 
distinct from the particular recording for which the ISRC is intended. 

 ISMN: The International Standard Music Number (ISO 10957) can be 
veiwed as a subset of the ISBN for works related to music such as 
scores and lyrics. 

 DOI: Digital Object Idendifier (IDF – International DOI Foundation, 
the syntax is defined in ANSI/NISO Z39.84) offers a system for 
persistent identification and management of digital items. The strings 
are opaque unlike CID, ISRC, etc. Initally designed for text documents. 

 GUID: Some systems such as RSS support a GUID or Globally Unique 
Identifier element. In RSS it is an optional string of arbitrary length, and 
some publishers use the URI of the media that is being published for 
this purpose. RSS will be explained in detail later. 
 

2.3.7 Recorded Television  

Personal media library managers used on media center PCs such as the 
Windows Media Center® and MythTV (Linux) organize recorded televi-
sion by leveraging the EPG metadata pulled from service providers as 
shown in Fig. 2.8. The names of the columns across the top including se-
ries, episode, length (run time), description, genre, and rating are represen-
tative, and many other fields are available to help users find and manage 
their personal content collections. As is typically the case with metadata 
sources, some of the data is absent (e.g. episode description) or questiona-
bly formatted (e.g. the rating value of “**;PG;TV-14” seems to be a com-
posite of multiple rating systems: MPAA, ATSC, and popularity rating).  

Standalone DVRs, or DVRs integrated into set-top boxes may include a 
networking capability to support media sharing in the home network. The 
library manager can display the recorded program metadata, however 
rights issues may restrict this sharing to only other DVRs in the home (a 
service feature called “whole home DVR”).  Fig. 2.9 represents the data-
flow for both the EPG metadata and content in a typical DVR application. 
Although not shown in the figure, for recorded movies, a combination of 
the EPG metadata and data from Internet providers such as IMdb or 
AMG® as discussed above may be used. We will focus on EPG in detail 
later. 
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Fig. 2.8. Media library metadata (Windows® Media Player® 11 on a Media 
Center PC). 

 
 
 

 
Fig. 2.9. Data flow for DVR EPG metadata. 
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2.4 Media Syndication: RSS Content Description 

2.4.1 Content Syndication  

RSS (really simple syndication) descriptors were developed for syndica-
tion of HTML news feeds but have evolved into a de facto metadata stan-
dard for Web media. RSS allows content producers to express high-level 
metadata about their content in a standardized way to enable other sites, 
aggregators, to display content from many different providers through a 
uniform user interface. Since Web revenue models depend on ad impres-
sions, it may seem counterintuitive that a content provider would wish to 
syndicate their content, which would allow the aggregators to become Web 
destinations and therefore eat into the ad revenue stream. However, the 
primary purpose of RSS is to announce content and to entice users to visit 
the origin site. The content descriptors always include a URL (rendered as 
a clickable link by aggregators) to allow users to retrieve the content. Im-
portantly, the content itself is not displayed on the aggregator’s site where 
the aggregator would benefit from ad impressions, perhaps in a peripheral 
frame around the content display. Rather, the user is directed back to the 
content origin site, and this site is designed to promote other content from 
the same site, therefore increasing dwell time and ad impressions. There-
fore, it can be seen that it is in the best interest of content providers to pub-
lish these RSS format content descriptions and to promote these to aggre-
gators to maximize viewership. RSS is designed for recurring content or 
series and is organized as “channels” of “items.” Note that the RSS “chan-
nel” is similar to a television series or program, not a television “channel.” 
RSS “items” are similar to television “episodes.” The New York Times 
does not have it’s own single RSS representation, but rather has several 
RSS feeds, such as “technology news,” “sports,” “world news,” etc. 

2.4.2 Media Enclosures 

Another important aspect of RSS is that in addition to the dynamic online 
mode of consumption described above, RSS supports a download model. 
A user can subscribe to an RSS feed in a reader application, Web browsers 
or e-mail client. The reader will download new content automatically as it 
becomes available to local storage and manage this content store, deleting 
older content as desired. This enables offline content consumption, and is 
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well suited for mobile applications where connections may not always be 
available.  

For connected applications, RSS provides an alternative to streaming. 
Content is downloaded in the background, and then played out from local 
storage. This enables “trickle” content distribution where the connection 
bandwidth is less than the media bit rate. The RSS reader effectively man-
ages an edge cache for the user, providing instant access to high quality 
content, unaffected by any networking impairments due to load, packet 
loss, etc. Today’s connected DVRs (e.g., Tivo®) and even displays (e.g. 
Sony Bravia® Internet Video Link®) contain feed readers and local storage 
to move RSS beyond the desktop to the set-top. This mechanism can offer 
an efficient alternative to broadcast distribution of serial television content, 
particularly niche content, reserving the high performance IPTV networks 
for live content such as sports. Basically, any content that a user watches 
from a DVR can be delivered via RSS or other managed download at 
higher quality and at much lower network engineering cost (no real-time 
quality of service guarantees are required.) The only downside is delay – 
the user must identify in advance, to which content they are interested in 
subscribing. Although the typical RSS feed uses HTTP over TCP to trans-
port the media, it is possible to use peer-to-peer (P2P) content distribution, 
in which case the origin URL refers to a torrent seed, for example. 

 The RSS 2.0 XML syntax [Win03] is easy for developers and content 
creators to use and the typical high-level metadata of title, date, description 
are readily available (see Fig. 2.10 for example.) In addition to the media, 
RSS includes the specification of a channel icon to represent the content in 
user interfaces. The XML namespace mechanism allows RSS content de-
scriptions to support additional applications and metadata such as geospa-
tial coordinates such as GeoRSS and W3C Geo or traditional bibliographic 
metadata such as the Dublin Core (see Table 2.5.) Unfortunately this ex-
tensibility has led to some added complexity, incompatibilities and redun-
dancy in the metadata specifications in use. The Atom format was pro-
posed as an improvement and partial solution to address these 
incompatibilities, but until such time as RSS sunsets, the result is yet an-
other syndication format on the landscape. 
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<rss version="2.0"> 
  <channel> 
    <title>Rocketboom</title> 
    <link>http://www.rocketboom.com/vlog/</link> 
    <description>Daily with Joanne Colan</description> 
    <copyright>Copyright 2007</copyright> 
    <lastBuildDate>Thu, 08 Mar 2007 09:34:15 -0500</lastBuildDate> 
    <generator>http://www.movabletype.org/?v=3.33</generator> 
    <item> 
      <enclosure 
url="http://www.rocketboom.net/video/rb_07_mar_06.MP4" length="10" 
type="video/mp4"/> 
      <title>rb_07_mar_06</title> 
      <description>story links: rb field correspondent bre pettis, 
prepares for space...</description> 
<link>http://www.rocketboom.com/vlog/archives/2007/03/rb_07_mar_06
.html</link>      
<guid>http://www.rocketboom.com/vlog/archives/2007/03/rb_07_mar_06
.html</guid> 
      <category>daily</category> 
      <pubDate>Tue, 06 Mar 2007 12:44:12 -0500</pubDate> 
    </item> 
    <item>(additional items)</item> 
  </channel> 
</rss> 

Fig. 2.10. An RSS 2.0 sample with MPEG-4 enclosures intended for the Sony 
PlayStation Portable (Rocketboom). 
 

Table 2.5. A stack view of RSS protocols. 
iTunes MediaRSS DCTerms etc.

RSS 2.0 
XML 1.0 

Encoding (e.g. UTF-8) 

2.4.3 Podcasts  

RSS and Atom include enclosure tags to refer to other media besides text, 
and Apple has chosen RSS 2.0 for their Podcast format (Fig. 2.11.) The 
widespread success of iTunes and the iPod® personal media player has re-
sulted in the unprecedented deployment of easy to use media download 
management capabilities. While other systems for organizing personal me-
dia and other personal media players predated Apple’s iTunes®, the single 
vendor environment has enabled a reliable, consistent platform for content 
delivery to mobile devices via download. As such, to reach the large audi-
ence of iPod® owners, content publishers have rushed to make their con-
tent available in the form of Podcasts. The standard is open and has been 
implemented by many consumer electronics device manufactures. For ex-
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ample, the Sony PSP® includes a WiFi interface and supports automated 
unattended syncing eliminating the requirement that users dock and sync 
their devices to get new content.  

 
<item> 
  <title>MLB Radio Daily: 04/11/2006</title>  
  <itunes:author>MLB.com</itunes:author>  
  <itunes:subtitle>Braves closer Chris Reitsma, Tim Brown of the 
LA Times, Jeff Blair of the Toronto Globe and 
Mail</itunes:subtitle>  

  <itunes:summary>Braves Closer Chris Reitsma joins the show. Jeff 
Blair of the Toronto Globe and Mail talks about the teams expec-
tations and how the Jays stack up in the division. Plus, LA 
Times columnist Tim Brown on the latest Gagne news and the lat-
est improvements to the ballpark.</itunes:summary>  

  <description>Braves Closer Chris Reitsma joins the show. Jeff 
Blair of the Toronto Globe and Mail talks about the teams expec-
tations and how the Jays stack up in the division. Plus, LA 
Times columnist Tim Brown on the latest Gagne news and the lat-
est improvements to the ballpark.</description>  

  <guid>http://dds.mlb.com/mp3/mlbr_daily/041106_mlbr.mp3</guid>  
 <enclosure 
url=”http://dds.mlb.com/mp3/mlbr_daily/041106_mlbr.mp3” 
length=”21614875” type=”audio/mpeg” />  

  <itunes:duration>30:01</itunes:duration>  
  <pubDate>Tue, 11 Apr 2006 18:24:00 EDT</pubDate>  
  <itunes:category text=”Sports” />  
  <category>Sports</category>  
  <itunes:keywords>MLB Radio Daily</itunes:keywords>  
</item> 

 

 
 

2.4.4 RSS for Content Ingest 

Podcast content is typically free of DRM and uses open standards such as 
HTTP, XML and MP3 – these attributes, combined with the metadata and 
scheduled update support provide for near-ideal conditions for media 
search engines to ingest the content. The RSS descriptions offer great effi-
ciencies for spiders over traditional crawling. While engines may not have 
the rights to store and redistribute the media streams, it is widely accepted 
for search engines to provide indices and direct users back to the origin. 
RSS feeds can point to a large collection of archived serial content, so 
search engines can quickly ingest and create indexed archives going back 
into the past in a controlled manner. The feed organizes the collection of 
media files into a cohesive unit with common metadata for the series. A 

Fig. 2.11. A segment showing metadata from an RSS 2.0 Podcast. 
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“crawler” (actually a “feed reader”) can download the small XML descrip-
tion and determine if there is any new content to download and ingest for 
indexing – there is no need to hunt around a directory tree searching for 
new media files. Also since RSS items include the publication time, search 
engines can make informed estimates of the next time that content will be 
published and only check for new content at that time. (RSS includes a 
“time to live” parameter indicating the maximum cache time, but it is gen-
erally more reliable to predict the next content publication time based on 
the frequency of past publications using heuristics.) 

 
Table 2.6. Supported audio and video enclosure types for common RSS feeds. 
Feed Support enclosure types (and file extensions) 
Audio Podcast audio/mpeg (.mp3), audio/x-m4a (.m4a) 
Video Podcast video/mp4 (.mp4), video/x-m4v (.m4v), video/quicktime 

(.mov) 
MediaRSS any 
 

2.4.5 MediaRSS  

As Table 2.6 indicates, there are many formats that cannot be included in 
standard Podcasts. Also, it is common practice for sites to offer content in 
multiple formats and multiple bitrates. Yahoo’s MediaRSS addresses some 
of these shortcomings; in particular, multiple enclosures are supported to 
offer different representations (different formats, bitrates) of the content. 
Yahoo’s video search engine suggests that content providers use Me-
diaRSS to publish their media for ingestion by the search engine. The Me-
diaRSS specification goes beyond global metadata to include elements 
with media timestamps. This capability allows for multiple thumbnail im-
ages and text that includes a temporal component to support captions. 

The simplicity combined with extensibility of RSS has resulted in wide-
spread adoption of this format on the Internet. They are used for amateur 
(blogs) and professional content (e.g. TV news clips or radio programs). 

 

2.5 Metadata for Broadcast Television 

Turning now from IP video sources to the broadcast world, we find a dif-
ferent range of metadata standards and systems. These systems have been 
developed to deliver television over a range of distribution channels such 
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as cable, direct broadcast satellite, or over the air. They support EPG and 
systems information as well as services such as emergency alerting, closed 
captioning, and content advisory for parental control (V-Chip) as required 
by the FCC. We will mention legacy analog standards because elements of 
these persist even as we have largely moved to digital TV distribution 
standards. 

2.5.1 Electronic Programming Guide (EPG)  

Interactive Program Guides (IPG) are an integral part of digital television 
systems, allowing viewers to choose which programs to watch and, for 
DVRs, which to schedule for recording in the future. The term Electronic 
Program Guide (EPG) is often used synonymously with IPG, but the latter 
implies an end user application for searching and browsing in addition to 
the program data itself. More recently, terms including Electronic Service 
Guide (ESG), Electronic Content Guide (ECG) and Electronic Media 
Guide (EMG) have emerged to indicate that material beyond traditional 
television channels may be described as well. As the number of available 
channels increases, the IPG becomes an invaluable tool since users can no 
longer remember what channel their favorite programs are on, or for that 
matter, which channel number is assigned to a particular broadcaster. The 
guide information is also used for masking the channel change delay in-
herent in most digital TV systems. As the user changes channels, the pro-
gram title and descriptive information from the EPG can be instantly dis-
played along with the channel number and name; the video will begin to 
display a few seconds later. 

Program schedule data is typically displayed as a two–dimensional grid 
with channels (or services, hence the name “ESG”) on one axis and time 
along the other axis. On the set-top, these interfaces struggle to overcome 
the relatively low resolution TV display and distant viewing environment 
by employing scrolling mechanisms so that only a tiny fraction of the 
available guide data is displayed at any one time. Filtering by program 
genre such as “sports,” “news,” or “movies” is another means by which 
users can locate content using the IPG. Text entry for search is cumber-
some at best using an infrared remote control, but it is an option and is 
typically implemented using a displayed keyboard (a.k.a. “soft keyboard” 
or “soft keypad”) navigated by arrow keys. 

IPGs are becoming commonplace on the Web (Yahoo, MSN, TVGuide, 
etc.) where text entry and screen resolution are less of a problem. However 
the instant gratification of viewing desired content such as a movie from a 
comfortable sitting position is absent. These IPGs are useful for program-
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ming DVRs to record content, or for determining if there is anything inter-
esting to watch in the evening once the work day is over. As more and 
more users consume video content on laptops and desktops, the transition 
from guide browsing to content consumption will be rapid and seamless. 

EPG data consists of two main classes of data: (1) video program (con-
tent) metadata, and (2) scheduling data. The former answers the question 
“what is on?” while the latter answers “how do I find it? (in the 
time/channel space).” This distinction is clear in the context of movies for 
example. The content metadata is what might be found on the DVD jacket: 
title, actors, running time, rating, etc. The scheduling information tells 
when and to what channel viewers must tune to watch the movie. The 
same content may air several different times, perhaps on different chan-
nels. However this notion that the content metadata is fixed and immutable 
while the scheduling data is ephemeral becomes muddied in the context of 
news programming. Here the content may be described as “Nightly news: 
today’s top stories” which obviously implies a temporal dependency. For 
24 hour news channels which use a cyclical programming model, the con-
tent metadata becomes less valuable than the temporal scheduling data.  

These EPG data sources are of great utility for video search systems, 
and it is up to the application to determine which data components are 
most valuable. For example, for archiving movies and comedy or drama 
series, the content metadata is most useful, while for broadcast monitoring 
systems, the temporal information may be just as important. These systems 
must support queries such as “what was on channel 13 in the New York 
market at 7:24pm EST on December 14th, 1994.”  

EPG streams are specific to a given geographic location and service dis-
tribution method. The geographic location determines to which metropoli-
tan area or “market” the viewer belongs (in the US, these are referred to by 
the FCC as “defined metropolitan areas”). Each market may have its own 
local programming and sports blackout rules. Furthermore, viewers may 
get TV content from a variety of sources including over the air (OTA) ana-
log, cable, DBS or IPTV. Providing up to date information for all of these 
sources is a Herculean task indeed. Due to the size of the data and the 
availability of accurate scheduling information, most EPG data is delivered 
to terminal devices (or perhaps cable head end or IPTV VHO servers) in 
units representing the content to be broadcast for the next two weeks. 
Breaking news and programming that runs over its allotted timeslot such 
as extra inning baseball games are often not described properly by EPG 
services. However, scheduling changes on the order of days can be han-
dled by most EPG services, for example, the baseball World Series is a 
best of seven games played over the course of several days, but ends early 
if one team wins four straight games. 
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There are many sources of EPG data; in the US, Tribune Media Services 
provides EPG through Schedules Direct® (formerly “zap2it”). Notably, use 
of this feed is available at nominal charge for application developers and 
as a result numerous applications use it. Other major service providers in-
clude FYI television, Infomedia (in Europe), and Gemstar International 
Group Ltd, which now includes TVGuide. The EPG data are typically dis-
tributed in an XML representation as indicated by Table 2.7 and mecha-
nisms for XML compression and segmented delivery are employed. To re-
duce redundancy, these formats use a keyed record schema representation. 
For example, information about each series is kept in a single place and as-
signed an identifier, and scheduled instances refer to this global informa-
tion through the use of the identifier. 

  
Table 2.7. Representative EPG XML formats. 

EPG System Source Usage 
TV-Anytime TV-Anytime Forum Components used in DVB, ARIB, 

ATSC/IIF 
OpenEPG Consumer Electronics 

Association® 
CEA-2033 

XMLTV xmltv.org open standard,  international 
XTDV Tribune Media Services zap2it, primarily US 
GLF Microsoft® IPTV, proprietary 

 
In addition to HTTP, EPG data may be delivered in other ways. For 

ATSC in the US, the TV Guide On Screen (also known as Guide Plus+ 
from Gemstar International) service uses the National Datacast Service to 
provide EPG data for digital television receivers. An eight day dataset is 
transmitted using the PBS channels. 

2.5.2 Extended Data Service (XDS) 

In the US, the analog TV transport used for closed captions has been used 
to encode program information as well. NTSC Field 2 can carry the Ex-
tended Data Service (XDS) which repeatedly sends metadata including 
channel call letters, program title, media duration and current play time. 
This service also includes the time of day which is used on terminal 
equipment, and this was originally appreciated by consumers since it was 
used for setting their VCR clocks. XDS is specified by the EIA-766 stan-
dard. Although most PBS stations use XDS, commercial stations have not 
widely adopted it, and it is therefore not reliable as a metadata source for 
program data. 
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2.5.3 Program and System Identifier Protocol (PSIP)  

While XDS was originally developed for transmission in analog TV sys-
tems, today this information is delivered digitally using the ATSC digital 
television specification using MPEG transport streams with a newer proto-
col, PSIP, the Program and System Identifier Protocol [PSIP02, Eyer02]. 
PSIP defines a set of “tables” for representing data in the MPEG-2 trans-
port stream. The time of day is carried in a System Time Table (STT), and 
the ratings in a Rating Region Time Table (RTT). A “virtual channel ta-
ble” is used to convey the list of available channels for guides, but of par-
ticular interest for content description are the EIT or Event Information 
Tables. The ATSC uses the term “Event” to describe an instance of a TV 
program (note that the term “program” has a different meaning in MPEG 
parlance). EITs are recommended to be transmitted twice a second. The 
EIT contains start, duration, title, and optional description, content advi-
sory data, and metadata about the closed caption and audio (not the data it-
self). Receiver UIs may display only the first 30 characters of the title. De-
scriptions may be sent using extended text messages (ETM) in extended 
text tables (ETT) and up to 16 days of program data may be advertised in 
advance. 

The Digital Video Broadcasting (DVB) consortium specifies a broad 
range of transmission standards for terrestrial, satellite, cable and handheld 
applications (e.g. DVB-T, DVB-S, DVB-C, and DVB-H). Like the ATSC 
specifications, DVB uses MPEG-2 transport streams (TS) but the protocol 
for program metadata differs and is encoded in Program Specific Informa-
tion (PSI) tables to include service information (DVB-SI). This is used for 
delivery of EPG information in DVB systems [DVB98]. 
 
 
 

 

2.6 Metadata for Video on Demand 

2.6.1 Introduction 

Video on demand (VoD) systems allow users to choose from a collection 
of titles and instantly begin to view the video material. These systems have 
been in use for many years but are growing in popularity recently with the 
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expansion of digital cable and IPTV. Video download services also may 
use VoD-formatted content as source material. As shown in Fig. 2.12, con-
tent providers deliver content via aggregators, and these in turn provide 
packed content to VoD service providers. 
  

 
Fig. 2.12. Video on demand content flows from producers through aggregator 

services and on to end-user service providers. 
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VoD systems support playback control including pause, fast-forward, 

etc., often using so called “trick streams” which are separate copies of the 
media encoded in advance of the content being made available for users. 
There may be several speeds supported and the system will switch among 
them to simulate advancing the video at 2x, 4x, etc. realtime. To help users 
make a VoD selection, services provide a preview capability and content 
providers prepare theatrical trailers to promote their content. To enable 
rapid browsing of several titles in parallel, systems present box art images 
of the asset along with the title. Metadata for search also includes genre, 
rating, actors, and a short description. Media particulars such as aspect-
ratio (letterbox / full screen), existence of subtitles and captions, and alter-
native audio languages are also available. This collection of the media it-
self, a preview, box art and metadata, forms a VoD “package” which is 
managed as a unit; for example the package has a well defined period of 
availability, after which the entire package is removed from the VoD servers.
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2.6.2 Cable Labs  

In the US, the cable companies have formed the Cable Labs, a consortium 
to promote standards and interoperability. Cable Labs VoD metadata and 
packaging standards are in widespread use for distribution of VoD content. 
Fig. 2.13 shows the overall structure of an ADI 1.1 package asset, while 
Fig. 2.14 contains a fragment of the metadata for a VoD asset in XML 
format. Notice that “Run_Time” has the same meaning as “total time” in 
Fig. 2.6. 

 

 
Fig. 2.13.  VoD package architecture. 
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Fig. 2.14. Excerpt of CableLabs ADI 1.1 format VoD metadata. 
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<App_Data App="MOD" Name="Title" Value="The Titanic"/> 
<App_Data App="MOD" Name="ISAN" Value="1881-66C7-3420-000-7-
9F3A-02450-U"/> 
<App_Data App="MOD" Name="Summary_Short" Value="Fictional 
romantic tale of a rich girl and poor boy who meet on the ill-
fated voyage of the 'unsinkable' ship"/> 
<App_Data App="MOD" Name="Run_Time" Value="03:14:00"/> 
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2.7 Production Metadata 

Depending on the type of production, the ratio of video footage that is shot 
to footage that ends up in the final production varies, but is typically in the 
range of 10:1 or higher. This raw content represents a great opportunity for 
video search systems when combined with asset management systems in 
the production workflow. In this section, we introduce some of the meta-
data standards used in professional video production systems. 

AAF, the Advanced Authoring Format, is used by professional editing 
equipment to capture and preserve metadata during the production process. 
MXF, the Media eXchange Format was initiated by the ProMPEG forum 
as part of an effort to promote interoperability as production systems 
moved from legacy tape-based packaged media to file-based interchange 
systems. MXF received the supported of the AAF Association (now called 
AWMA) as well as the European Broadcast Union (EBU) and these bodies 
have developed and standardized MXF through the Society of Motion Pic-
ture and Television Engineers (SMPTE.) MXF’s main focus is standardi-
zation for interchange of finished works (called “material packages”) as 
well as the constituent raw footage (“file packages”), while the AAF is 
aimed more for production and advanced editing workflows. As a result, 
MXF is a subset of AAF. Also, there are other formats that have been in 
use prior to MXF. For example, Avid (a prominent vendor in this space) 
video production tools have used their own format (OMF). GXF, the 
Global Exchange Format, originally proposed by Grass Valley Group is 
used by professional producers as well. Vendors are incorporating native 
support for MXF, but it is envisioned that there will continue to be MXF 
conversion as part of the production process, due not only to content ar-
chives and assets in legacy formats, but also because MXF is not intended 
to meet all of the needs of every application (e.g. AAF will be used for au-
thoring). In fact, MXF is intended as an interchange format rather than an 
archival storage format. A key aspect of MXF is its use of UMIDs to allow 
metadata to be handled separately from the “essence” media. The media 
can be stored in an A/V server while applications manipulate metadata or 
perform operations such as search and display. Of course MXF also sup-
ports inclusion of lower-level metadata such as timecodes, GPS, etc. which 
require frame-level precision within the media itself in addition to the 
header metadata. MXF is agnostic to the compression format and defines a 
‘generic container’ for encapsulating metadata for a handful of stream 
formats that do not include extensible metadata support [Tahara02].  The 
EBU has also defined the P/Meta scheme for “metadata exchange between 
content producer, distributor and archive” [Hoo02]. MXF includes meta-
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data recommended by the EBU for broadcasters called the “Geneva 
Scheme” metadata. 

DMS-1, the Descriptive Metadata Scheme, has been defined for use 
with MXF and consists of three parts: 

1. production Framework for global metadata; 
2. the Clip Framework (collection of ‘scenes’ which describes a stream 

or track); 
3. the Scene Framework for frame-level metadata and as specified in 

SMPTE S380M.  
MXF is not XML based but uses the SMPTE 336M key-length-value for-
mat to serialize the metadata for transmission and storage although sys-
tems also use XML representations of MXF data for exchange. 

 
 

 

2.8 Timed Text Formats 

2.8.1 Introduction  

We’ve seen how global metadata such as title and genre are represented, 
stored and delivered in a wide range of applications such as Podcasting 
and broadcast television. Formats such as MXF and MPEG-7 allow much 
deeper metadata specification. In particular, representation of the dialog of 
a program is of particular interest for video search applications, so we will 
focus on this aspect. 

Several metadata standards include support for storing the dialog of a 
video program along with corresponding temporal information. For many 
applications such as streaming captions, DVD subtitles, and song lyrics, 
other specific dialog storage formats have been developed which are easier 
for application developers to use, even if they lack support for other basic 
metadata and are not extensible. This type of information is of obvious 
value for video search engines, and the temporal information is of impor-
tance for retrieving segments of interest in long form video. In this section, 
we will introduce several widely used dialog or annotation storage formats 
and provide examples of each. Note that, as is the case with global meta-
data, this information can be embedded in the media container format, or 
stored in separate files. The text may be synchronized or unsynchronized, 
and may be represented as a single unit in the header of the media file, or 
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represented as a separate stream, multiplexed with other media streams for 
transport. 

 

2.8.2 Synchronization Precision and Resolution  

Time units are specified in a variety of ways such as in milliseconds rela-
tive to the start of the media, as frame numbers referencing the media time 
base or using SMPTE time codes. RTP defines the Normal Play Time 
(NPT) to represent these values. As Table 2.8 shows, applications may 
employ different resolutions for time stamping text segments. Note that al-
though roll-up mode captions can be precisely specified, the timing is in-
accurate due to the variable transcription delay inherent in real-time cap-
tioning. 

 
Table 2.8. Text segmentation resolution for various applications. 

Application Text segmentation resolution 
Speech recognition / synthesis Phoneme (or sub-phoneme) 
Roll-up captions Two characters 
Karaoke Syllable 
1-best ASR transcription Word level 
Music lyrics, streaming media captions Phrase 
Pop-up captions, 
Subtitles 

Two “lines” where each line is ~30 
characters 

Aligned transcripts Sentence 
Distance learning, slide presentations Paragraph 
  
 
Unfortunately, as is the case with global metadata, there is no overarch-

ing agreement on the file formats or syntax for marking up timed text. The 
W3C is developing Timed Text to help address this problem, and the rec-
ommendation includes all possible features to support almost any applica-
tion. However, it is likely that the simple, application specific text formats 
will persist for the foreseeable future; in fact new formats are still being 
created, e.g. the MediaRSS specification is relatively new, so these formats 
show no sign of dying out. Table 2.9 gives a sampling of some of the for-
mats in use today to give an idea of the current state of timed text on the 
Web. Note that DSM-CC NPT is the Digital Storage Media Command and 
Control Normal Play Time which is also used by RTSP (RFC 2326 3.6). 
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Table 2.9. Representative timed text formats. 
Format Source Sample 
MediaRSS Yahoo®, uses 

DSM-CC NPT 
timestamps 

<media:text type="plain" 
lang="en" start="00:00:03.000"  
 end="00:00:10.000"> 
Juncos can be black or 
gray</media:text> 
 

SAMI Microsoft®, milli-
second timestamps

<sync start="3"> 
Juncos can be black or gray 
</sync> 

QuickTime® 
Text 

Apple [00:00:08.959] 
Juncos can be black or gray 

RealText RealNetworks®, 
SMIL 

<time begin="00:00:19.090"> 
<clear/>Juncos can be black or 
gray 

TimedText 3GPP, MP4, W3C <TextSample  
sampleTime="00:00:08.000" 
text="Juncos can be black or 
gray"> 
</TextSample> 

Synchronized 
lyrics/text   

ID3 Lyrics3v2 [id3 
spec] 

[00:11]Juncos can be black or 
gray[CR][LF] 

Google Video Google® 00:00:11.000 
Juncos can be black or gray 

SRT One of the popular 
subtitle formats 
used in DVD 
transcoding 

1 
00:00:11,000 --> 00:00:16,400 
Juncos can be black or gray 

 

2.8.3 Transcripts  

In addition to the metadata sources described above, media content in the 
form of text or text streams is sometimes available from the Web or other 
sources. Transcripts of TV program dialogs are freely available on the 
Web for some programs, (e.g. cnn.com/transcripts.) Others are offered 
through fee-based services such as Burrelles® or LexisNexis®. Transcripts 
usually include some level of speaker ID and may include descriptions of 
visuals or audio events not in the dialog (e.g. “car horn honks”).   
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2.8.4 Closed Captions  

In the US, closed captioning is used to make TV accessible to hearing– 
impaired viewers. Captions are textual representations of the program dia-
log as well as any significant audio events that a hearing–impaired viewer 
would need to understand the program. The term “closed” connotes that 
the captions can be switched on or off by the viewer. Captions are similar 
to subtitles used for translating films into other languages (see Table 2.10). 
Captions benefit all users: in certain consumption scenarios such as noisy 
environments, multichannel viewing or in public venues, captions are in-
valuable. Captions also improve comprehension for non-native listeners 
and can improve reading skills.  

 
Table 2.10. Comparison of EIA-608 captioning and subtitling. 

EIA-608 Captions Subtitles 
Primarily intended for hearing–
impaired viewers (rarely includes 
“second language”) 

For alternative language viewers (very 
rarely includes cues for hearing–
impaired viewers) 

Character codes (modified ASCII) Bitmapped 
At most two languages Many languages 
Latin characters (approximate) Any characters or fonts 

  
The FCC has mandated that nearly all broadcast content must be cap-

tioned, with some exceptions for cases where it is not practical. Video ser-
vices and equipment such as DVRs and DVDs are required to preserve or 
“pass through” the caption information, and television sets over 17 inches 
in diagonal are required to include the ability to display captions. 

 Live TV is captioned in real-time often by highly skilled stenographers 
and displayed in “roll-up” mode, while other productions including com-
mercials and movies are captioned in an offline mode. In some cases, the 
program script for the teleprompter is fed into the closed caption. Offline 
captioning is displayed in a “pop-up” or “pop-on” mode where the timing 
can be precisely controlled (down to the frame level) and screen position-
ing is often used to indicate speaker changes. Real-time captioners can’t 
afford to take the time to position text underneath the speaker, so a con-
vention of using two chevron (greater-than) characters has been adopted to 
indicate speaker change. Similarly, three such characters indicate a topic 
change. The EIA-708 closed caption used in the ATSC DTV standard 
greatly expands EIA-608 and includes carriage of 608 for compatibility. 

DVD subtitles are bitmaps, unlike EIA-608 captions which use a modi-
fied ASCII encoding. This provides more flexibility, but requires optical 
character recognition for extraction and use by search engine systems. 
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Many tools are available for this (subtitle rippers). Note that many DVDs 
include closed captions as well as subtitles. 

 

2.8.5 Synchronized Accessible Media Interchange  

Microsoft developed the Synchronized Accessible Media Interchange 
(SAMI) format to provide the ability to add closed captions to streaming 
Windows Media® format audio and video. The captions are stored in an 
XML-like file separate from the media but with the same root name with 
the extension “.smi”. This often leads to confusion with the SMIL format 
files which may use the same extension. Although often stored in the same 
directory as the media, the media player can read the SAMI file from an 
entirely different URL and display the captions under the control of the 
user.  

 

2.8.6 Metadata from Social Sources  

Web users extract movie subtitles, translate, and post them on the Web 
(this is known as fan translation, or fansubs.) A popular movie may be 
translated into more than 30 languages. This phenomenon is typically in 
violation of copyrights and the quality cannot be assured. However, a site 
called DotSub is available for social multilingual captioning of Web media 
in Flash format, and this is welcomed by many content creators, rather 
than viewed as a copyright infringement. Extended character sets and en-
codings are needed to represent multilingual texts. Beyond dialog repre-
sentation, social tagging (a.k.a. folksonomy) may be applied to video 
wherein any user may enter metadata which is later indexed for retrieval.  

 

2.8.7 Metadata Issues  

Practical considerations limit the reliability of authored metadata such as 
descriptions or keywords, particularly for non-professionally authored me-
dia. It is up to the content author to maintain this information, which is te-
dious and expensive, so in practice it may not be reliable. Applications 
such as the Windows Media® Encoder which retain the most recently used 
values across runs, while intended to save repeated metadata entry, may in 
fact cause problems. If a user is not aware of this feature, it is possible that 
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the metadata they may end up with is more relevant to their last work, not 
their current one. Also, editing applications may extract metadata from the 
constituent clips and apply that to the edited work. 

 

2.9 Conclusion 

We’ve seen that there is a wide range of content sources available to video 
search engines, each with its own associated metadata descriptions. Meta-
data systems have historically arisen from distinct communities including 
video production, US and international television broadcasters, as well as 
the computing and Internet standards bodies.  In each of these domains, 
legacy and single-vendor systems continue to play a major role, represent-
ing significant sources of described content. 

For a representative sampling of systems from these domains, we’ve 
looked into metadata which describes content at a range of levels. While 
MPEG-7 and MXF can go much further, most systems at a minimum sup-
port specifying textual metadata with temporal attributes. Other systems 
such as the DCES provide only high level attributes about the media as-
sets, but offer broad applicability. The related topic of text stream formats 
for capturing the dialog of video and audio media was also introduced. Al-
though technically text streams are content as opposed to metadata, for 
search applications they are interpreted by retrieval systems as descriptions 
of the media content. Finally, metadata systems for describing collections 
for content such as Electronic Program Guides and RSS Feeds were shown 
to provide valuable metadata about their constituent media items. 
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3 Internet Video 

 

 

3.1 Introduction 

Today’s digital video systems can produce excellent quality visual and 
auditory experiences at relatively low cost. However, Internet users still 
encounter many problems that result in an unsatisfactory experience. Al-
though the situation has been steadily improving, buffering delays, incom-
patible formats, blocky, blurry images, jerky motion, poor synchronization 
between audio and video are not uncommon and lead to frustration to the 
point that the user experience of video services involving search is greatly 
impacted. User’s expectations are raised by their familiarity with broadcast 
television systems, where well defended standards, mature technologies, 
and abundant bandwidth prevail. In this chapter, we provide background 
information to shed light on the complexities involved in delivering IP 
video. We address the practical issues that video search engine systems 
must resolve in order to deliver their “product” – relevant video informa-
tion – to users.  

 

3.2 Digital Video 

3.2.1 Aspect Ratio 

When designing user interfaces for visualizing video search results, the 
frame aspect ratio (FAR) of the source video and resulting thumbnails 
must be taken into account. For many years the ratio of width to height for 
the bulk of video on the Web was 4:3, but with HD cameras dropping in 
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price, more and more 16:9 format video is appearing. Content sourced 
from motion picture film may have one of several aspect ratios, but has 
always had a wider aspect ratio than standard definition television. It is 
also common to find wide aspect ratio source material digitized within a 
4:3 frame in letterbox format with black bars at the top and bottom. When 
presenting grids of thumbnails for visual browsing, these circumstances 
present basic layout issues, and make the thumbnails for some content ap-
pear smaller than for others, impeding browsing. 

Metadata extraction systems must accommodate video with disparate 
spatial resolutions. For example, a system may detect faces and represent 
the bounding box results in XML format for content that is 640 x 480 or 
320 x 240 but render a user interface with 160 x 120 thumbnails. We can 
scale the thumbnails or rely on the browser to do so, but we must also 
scale the bounding box coordinates if we are to plot the detection results 
overlaid on the thumbnails using Scaleable Vector Graphics (SVG) or 
Vector Markup Language (VML). So any image region-based metadata 
must be effectively normalized for query and display to handle source im-
ages of various scales and must support different vertical and horizontal 
scale factors to normalize different frame aspect ratios. 

Pixel aspect ratio (PAR) further complicates the matter. Early analog 
cameras and analog TV systems did indeed have continuous signals along 
the scan lines that varied in relation to the illumination – similar to the 
situation with audio microphones. However, in the vertical direction, the 
picture was sampled as is done in digital systems. There is a discrete fixed 
number of “lines” per frame – for NTSC we can count on 480 valid lines 
of picture information. Of course for digital television, we must sample in 
the other dimension as well, and then quantize the samples. Since the FAR 
for NTSC is 4:3, we should divide each line into 640 pixels so that each 
sample covers the same small extent of the picture in the vertical and hori-
zontal directions – a square pixel. So why should we introduce a “rectan-
gular pixel?” It turns out that the channel bandwidth of NTSC specification 
justifies sampling the signal at a higher rate to preserve image detail. 720 
is commonly used and ATSC DTV also specifies a sampling resolution for 
standard definition video of 704 x 480. So some content may be sampled 
with square pixels while other content may have pixels that look like shoe 
boxes standing on end. A feature detector based on spatial relations (e.g. 
Viola / Jones) trained on square pixel data will perform poorly on rectan-
gular pixel data, so a preprocessing image conversion step is required. Of 
course it is possible to scale the detector or make it invariant to scale, but 
this is more complex. Failure to manage the complexity of FAR and PAR 
correctly not only degrades metadata extraction algorithm performance, it 
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results in objectionable geometric distortion: circles looking like ovals, and 
actors looking like they have put on weight. 

A similar issue can arise in the temporal dimension. We may encounter 
video with a wide range of frame rates. Rates of 30, 29.97, 25 and 24 
frames per second are common and lower bit-rate applications may use 15 
f/s. Security  or Webcam video may forsake smooth motion altogether and 
use 1 f/s to save storage. Media players can render the video at the proper 
rate, but motion analysis algorithms that assume a given frame rate may 
not perform well for all content. This effect is not usually much of a prob-
lem since the design of these algorithms intrinsically accommodates a 
wide range of object velocities. Think here of gait detection or vehicle 
counters – the absolute estimate of object velocity may be affected but the 
detection rate may not be. 

Interlacing is another source of problems for video systems. Interlacing 
was introduced years ago with the first television broadcast standards to ef-
fectively double the spatial resolution given a limited bandwidth channel.  
The cost, however, is lower temporal resolution (and increased complexity 
for video processing engineers.)  The frame is divided into two fields, one 
with the odd numbered lines and one with the even. The fields are sent se-
quentially transmitted. The result is fine for static pictures, but any objects 
that are in motion result in saw-tooth edges if the video is paused or sam-
pled at the frame resolution. If we are subsampling to create thumbnails, 
this may not be a problem. The new HDTV standards perpetuate interlac-
ing (1080i vs. 720p). The term “progressive” is used to refer to non-
interlaced video, but amusingly the term “progressive JPEG” refers to 
something similar to interlacing. Video processing algorithms must handle 
interlaced sources gracefully, by de-interlacing, dropping fields, or by tak-
ing into account the slight vertical sampling offset between consecutive 
fields. 

The relation of illumination or intensity to signal amplitude mentioned 
above is nonlinear and is represented as an exponential referred to as 
‘gamma’. Analog television systems were designed for CRTs with a 
nonlinear response and so precompensated the signal. Computer graphics 
applications and many image processing algorithms assume a linear rela-
tion. 

 

3.2.2 Luminance and Chrominance Resolution 

The human visual system cannot resolve image features that have differing 
hue but similar brightness as well as it can resolve features that vary in lu-
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minance. Therefore, compression and transmission systems encode 
chrominance information at lower spatial resolution than luminance with 
little apparent loss of image quality. The terms 4:2:2, 4:2:0, 4:1:1, etc. refer 
to the amount of subsampling of the chrominance relative to the luminance 
for different applications. When the image is rendered for display, it is 
converted from a luminance–chrominance color space such as Yuv or Y, 
Cr, Cb to R,G,B using a linear transform. Nonlinear transformations to 
spaces such as H,S,V yield a better match to the perceived visual qualities 
of color, but the simpler linear transformation is sufficient for coding gain. 
Single chip CCD or CMOS sensors designed for low cost consumer appli-
cations such as mobile phones or cameras also take these effects into ac-
count. Rather than having an equal number of R,G,B sub-pixels, a color 
filter array such as the Bayer checkerboard [Bayer76] is used to produce 
an image with relatively higher luminance resolution. This scheme has 
twice as many green pixels as red or blue. Another point to consider is that 
the spectral sensitivity of the human eye peaks in the green region of the 
spectrum, while silicon’s sensitivity is highest in the infrared (IR). IR 
blocking filters are used to select the visible portion, but the sensitivity of 
the blue is much lower than the red. The resulting signal to noise ratio for 
the blue component is always lower than the green or red. Color correction 
processing as well as gamma correction tends to emphasize this noise. 
Also, color correction parameters are determined for given illumination 
conditions and, particularly in consumer applications, poor end-to-end 
color reproduction is common. Noise in the blue component, subsampled 
chrominance, and poor color reproduction  not only degrade image quality, 
but also degrade performance of video processing algorithms that attempt 
to take advantage of color information. 

 

3.2.3 Video Compression 

Web media is compressed; users almost never encounter original, uncom-
pressed video or audio – the sheer scale of storage and bandwidth required 
makes this impractical. Even QVGA resolution requires over 55 megabits 
per second to render in 24 bit RGB at 30 frames per second, while higher 
resolutions require even more bandwidth. The requirement that video be 
compressed has several implications for video search engine systems as we 
shall see. 

Lossless video compression is rarely used since the bitrate reduction at-
tainable is quite limited. Lossy compression offers impressive perform-
ance, but comes at the price of information loss – the original image or 
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video sequence cannot be fully recovered from the compressed version. 
The distortion between the original the reconstructed image is often meas-
ured using the peak signal to noise ratio PSNR although this is well known 
to be a poor match to perceived image quality. It is extremely difficult to 
quantify image quality; it is highly subjective and content dependent. 
PSNR is an example of a “full reference” quality metric as defined by 
ITU-T Recommendation J.144 – “partial reference” and “no reference” 
techniques are used for applications where full reference data is not avail-
able, for example measuring quality at the set–top box at the end of a video 
delivery service [J.144]. Compression algorithms are evaluated using rate-
distortion plots which reflect attempts to approach the information theo-
retic limits outlined in Shannon’s rate distortion theory. Algorithmic im-
provements have made great strides in pushing the theoretic limits, while 
Moore’s law has allowed for increasingly complex implementations to be 
standardized and used in practical systems. 

Since video is a series of still frames, one would expect that video com-
pression is related to the JPEG image compression used in digital cameras, 
and, in fact, this is indeed the case. Many consumer cameras capture video 
as a sequence of JPEG frames to create “Motion JPEG” (M-JPEG) format 
since the computational complexity of this approach is minimal. At the 
high end, professional editing systems use M-JPEG or “MPEG-2 I frame-
only” as well. Here the systems are designed for high-quality and ease of 
cutting and splicing sequences together, rather than on high compression 
ratios.  

JPEG works by dividing an image into small blocks and transforming 
(using the Discrete Cosine Transform) from the pixel domain to the spatial 
frequency domain. In this domain, pixels whose intensity values are simi-
lar to their neighbors can be efficiently represented – in smooth areas of an 
image, an entire block can be approximated by just its average (or DC) 
value or just a few DCT coefficients. To get an intuition for the concept of 
spatial frequency, take a look at a folder of digital photo files and sort them 
by the file size. The larger files will have a large proportion of the image in 
sharp focus with a lot of edge information, say from a brick wall or a tree 
with leaves. The smaller, more compressed, files will be the out of focus 
shots or contain a small object on a large homogenous background. Now 
suppose that we point a camera at a brick building and capture a video se-
quence in vivid detail. The frames are nearly identical – they have a high 
degree of temporal redundancy. By subtracting the second frame from the 
first, we end up with a frame that is mostly uniform, perhaps with a small 
region where someone sitting by a window in the building moved slightly. 
As we have found, this is the type of image that compresses well, so that 
our entire sequence can be efficiently represented by encoding the first 
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frame (intra-frame coding) followed by encoding the difference between 
this frame and subsequent frames (inter-frame coding). Now of course 
there are some complications that arise due to temporal noise in the signal, 
and illumination changes due to passing clouds, etc. But the main problem 
in this scenario is that slight camera motion will result in a large difference 
image in any region where the image is not uniform (e.g. the sky will not 
cause much of a problem.) Video coders compensate for this using block-
matching where a block of one frame is compared to several neighboring 
blocks in another subsequent frame to find a good match. In the case of a 
shift in the camera, most blocks will have the same shift (or motion vec-
tor). So, video compression from MPEG-1 up through MPEG-4 is based 
on DCT of motion compensated frame difference images.  

Video compression standards are designed and optimized for particular 
applications; there is no one-size-fits-all codec. The ITU developed the 
H.261 and H.263 for low bitrate, low latency teleconferencing applica-
tions. For these applications, the facts that the camera is usually stationary 
(perhaps mounted on pan-tilt stage next to a monitor) and that conferenc-
ing applications typically involve static backgrounds with little motion 
greatly help improve the quality at low bitrates. It is reasonable here for 
coders to transmit intra-coded blocks rather than entire frames. MPEG-1 
was developed for CD-ROM applications with bitrates in the 1 Mb/s 
range. MPEG-2 is used in broadcast distribution and in DVDs where 
higher quality and interlaced video support are requirements. MPEG-4 
brings increased flexibility and efficiency, of course with increased com-
plexity, and finally the ITU and MPEG bodies have achieved interopera-
bility with MPEG-4 part 10, ITU H.264/AVC. For contribution feeds or 
editing applications M-JPEG or similar intra-coded video at very high bi-
trates is appropriate to ensure quality downstream. 

MPEG-2 Systems [Info00] added a wide range of capabilities that were 
not available with MPEG-1. While “program streams” are used for file 
based applications (MPEG uses the term DSM – Digital Storage Media) 
which have negligible error, the notion of a transport stream was intro-
duced to allow for efficient delivery over noisy channels such as may be 
found in typical broadcast systems such as cable or today’s IPTV over 
DSL. The transport stream specification also supports multiplexing several 
(even independent) media streams which enables secondary audio pro-
gramming or alternative representations of the video at different resolu-
tions and bitrates [Haskell97]. Table 3.1 lists a few common video com-
pression standards and bitrates typically encountered. For actual maximum 
and minimum bit rates supported, readers should consult the standard 
documents. 
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Table 3.1.  Applications of video compression systems (bit rates are approxi-
mate, and assume standard definition). 

Standard Typical bitrates Common applications 
M-JPEG, JPEG2000 Wide range, up to 

60M 
Low cost consumer electronics, High 
end video editing systems 

DVCAM 25M Consumer, semi-pro, news gathering 
MPEG-1 1.5M CD-ROM multimedia 
MPEG-2 4–20M Broadcast TV, DVD 
MPEG-4 / H.264 300K–12M Mobile video, Podcasts, IPTV 
H.261, H.263 64K–1M Video Teleconferencing, Telephony 

 
Within all of these standards, there are “profiles” which are particular 

parameter settings for various applications. The latter standards have a 
wide range of flexibility here which allows them to span a wide range of 
applications while the earlier standards are more constrained. So it is pos-
sible for an MPEG-4 decoder not to be able to decode an MPEG-4 bit 
stream (e.g. if the decoder only supports a baseline profile). Profiles are in-
tended for varying degrees of complexity (i.e. required computational 
power of encoders / decoders) as well as latency or error resilience. For 
example, for DVD applications, variable bit rate (VBR) encoding allows 
bits required to represent high action scenes to be effectively borrowed 
from more sedate shots. Of course, the player has to read large chunks of 
data from the disk and store them in a local buffer in order to decode the 
video. On the other hand, for digital broadcast TV, rapid channel change is 
desirable so the buffering requirements are kept to a minimum. The quality 
difference between DTV and DVD leads many viewers to think that DVDs 
are HD while in fact only Blue Ray and HD-DVDs support higher resolu-
tion than standard definition. Some of this confusion arises because DVDs 
are often letterbox, but primarily it is due to the lack of obvious coding ar-
tifacts such as blocking or contouring. Higher bitrates play a role, but even 
at the same bitrate, real-time encoding for low latency applications results 
in lower quality. Additionally, the quality of the source is key – some digi-
tal television sources are of dubious quality, perhaps with multiple genera-
tions of encoding – as well as the fact that mastering DVDs is done off-
line, allowing for two-pass encoding. DVD mastering is really an art; a bit 
like making a fine wine as opposed to producing grape juice. So, encoding 
systems designers have a challenging job to balance latency, complexity, 
error resilience, and bandwidth to achieve the quality of experience that 
the viewer ultimately enjoys. 

What implications do these video compression systems have for video 
search engines?  



66     Internet Video  

 Video content analysis / indexing algorithms must either support the 
formats natively, or transcode to a format that is supported. Since many 
algorithms operate in the pixel domain as opposed to the compressed 
domain, this “support“ may simply imply that the system can decode the 
video. However, the video quality does have an effect on indexing 
accuracy – noise or image coding artifacts such as blocks can be 
significant problems. Also, in some cases, periodic quality fluctuations 
due to poor bit allocation between intra- and inter-coded frames can 
produce more subtle artifacts. 

 Of course from a systems perspective, high bitrate video may not be 
practical to archive on-line at scale. Further, each format must be 
supported by the client media player, and by media servers as well. This 
problem of incompatible media players and formats is driving a move to 
Flash formats, which at least offers a degree of independence from the 
client operating system. 

 Finally, as we have seen, these codecs are highly optimized for 
particular applications, and this typically does not include streaming or 
fine grained random access. 

MPEG frames are organized as “groups of pictures” or GoP which con-
sists of an intra-coded frame (I frame) and several predicted frames (P and 
B frames). Applications such as media players can’t jump into a video 
stream in the middle of a GoP and start playing – they must refer back to 
the I frame. So in effect the GoP length determines the precision for media 
replay requests. For many applications the GoP length is less than a second 
(15 frames is common) so this has only minor effects on the user experi-
ence, but for high coding efficiency applications, “Long GoP” coding is 
used where there may be several seconds between I frames. H.264/AVC 
introduces many more complex options in this area such as multiple refer-
ence frames for different macroblocks which further exacerbate random 
access [Rich03]. 

 
 

3.3 Internet Protocol Media Systems 

3.3.1 Transport 

Video search engines deliver their product to clients over IP connections in 
several ways: 
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 Download – This simple delivery system has been available since the 
beginning of HTTP where MIME types are used by browsers to launch 
the appropriate media player after the media has been downloaded to a 
local file. 

 Progressive Download – Again, a basic HTTP server delivers the media 
file, but in this case its play-out is initiated via a media player before the 
entire file is downloaded. 

 HTTP with byte offsets – The byte range feature of HTTP/1.1 is used to 
support random access to media files. Clients map user play position 
(time seek) requests to media stream byte offsets and issue requests to 
the server to fetch required segments of the media file. 

 Managed Download – A specially designed client application provides 
additional features such as DRM management, expiration, reliable 
download and HTTP or P2P is typically used for transport. There are 
many types of these applications, from applications that operated in the 
background without much of a UI, to iTunes which include download 
management capabilities for Podcasts and purchased media. 

 HTTP Streaming – These systems require a dedicated media server that 
parses the media file to determine the bit rate and delivers the content 
accordingly. Random access and other features such as fast start, fast 
forward, etc. may also be supported. 

 RTSP / RTP – A media streaming server delivers the content via UDP 
to avoid the overhead of TCP retransmissions. Some form of error 
concealment or forward error correction can be used. Some IPTV 
systems use a “reliable UDP” scheme where selective retransmission 
based on certain conditions is employed. 

 

3.3.2 Searching VoD vs. Live 

Most video search applications inherently provide personalized access to 
stored media – essentially this is a “video on demand” (VoD) scenario, al-
though the term VoD is commonly used to refer to movie rental on a set-
top box delivered via cable TV or IPTV. For VoD, the connection is point 
to point and unicast IP transmission is appropriate. However, IPTV and 
Internet TV are channel based where many users are viewing the same 
content at the same time so multicast IP is employed. As the number of 
these feeds grows, users will need searching systems to locate channels of 
interest. In this scenario, EPG/ESG data including descriptions will pro-
vide the most readily accessible metadata for search. Live streams can be 
processed in real time to extract up to the minute metadata for more de-
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tailed content-based retrieval. Of course, prepared programming and re-
broadcasts of live events can be indexed a priori and used to provide users 
with more accurate content selection capabilities. 

 

3.3.3 IPTV 

IPTV is often heralded as the future of television, promising a revolution 
on the same scale as the Web. With all this potential, there are many 
groups co-opting the term IPTV to their own advantage. Does IPTV imply 
any television content delivered over an IP network? Well, we have been 
able to see video content streamed over the Internet for years so it makes 
sense to restrict the term IPTV to a narrower connotation. Of course, as 
more bandwidth has become available and desktop computers more pow-
erful, we can experience full-screen video delivery and begin to approach 
broadcast TV quality (although HD delivery to large audiences over un-
managed networks is much more demanding and may be slow to evolve). 
The term “Internet TV” has been used to describe this type of system, and 
the term IPTV is generally accepted to mean delivery of a television-like 
experience over a managed IP network. To avoid confusion for the pur-
poses of standardization, the IPTV Interoperability Forum (IIF) group 
formed by the Alliance for Telecommunications Industry Solutions (ATIS) 
[ATIS06] has defined IPTV as:  

the secure and reliable delivery to subscribers of entertainment video and re-
lated services. These services may include, for example, Live TV, Video On 
Demand (VOD) and Interactive TV (iTV). These services are delivered 
across an access agnostic, packet switched network that employs the IP pro-
tocol to transport the audio, video and control signals. In contrast to video 
over the public Internet, with IPTV deployments, network security and per-
formance are tightly managed to ensure a superior entertainment experience, 
resulting in a compelling business environment for content providers, adver-
tisers and customers alike.  

In the context of video search, IPTV is a significant step towards an 
evolved state of video programming where the entire end-to-end process is 
manageable using generic IT methods. While there is clearly a long way to 
go in terms of interoperability and standardization for exchange of media 
and metadata, the IP and accessible nature of the new delivery paradigm 
paves the way toward making this a reality. This offers the potential for 
engineers competent in networking and data management technologies to 
bring their experience to bear on the problem of managing video distribu-
tion. The potential for metadata loss through conversions through the de-
livery chain is greatly reduced. Of course, today’s IPTV systems use IP for 
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distribution to consumers, but IP is not necessarily used for contribution of 
broadcast content. Traditional and reliable methods used for cable delivery 
such as satellite, pitcher / catcher VoD systems, etc. will persist for the 
foreseeable future. In addition to ATIS, several other bodies including 
ETSI (DVB-IPTV), OMA (BCAST) and OpenIPTV are participating in 
drafting IPTV recommendations for a range of applications. 

Although not specified in the ATIS/IIF definition, IPTV deployments 
are usually delivered via DSL links that do not have enough bandwidth to 
support the cable model of bringing all channels to the customer premises 
and tuning at the set-top. With VDSL2, downstream bandwidth is typically 
25Mb/s which can accommodate two HD and two SD channels simultane-
ously. With IPTV over DSL, only a single channel for each receiver is de-
livered to the customer – effectively the “tuning” takes place at the central 
office. This is sometimes referred to as a “switched video” service (al-
though the term is used is used in cable TV delivery as well). To support 
rapid channel changing, IPTV systems keep the GoP short and employ 
various techniques to speed up channel change. Of course short GoP and 
channel change bursts consume bandwidth and systems must balance these 
factors. Given this optimization, and the necessary FEC for DSL, IPTV 
streams must be transcoded for efficient archival applications where there 
is less need for error correction. 

As we have seen, there are a wide range of video coding systems in use 
and each is optimized for its intended set of applications. As video content 
is acquired and ingested into a video search engine, it is very likely that the 
encoding of the source video is not appropriate for delivery from the 
search engine. In some cases the bit rate is simply too high to scale well 
given the number of concurrent users, or the format may be unsuitable for 
the intended delivery mechanism. Although some services attempt to redi-
rect users to origin servers, the user experience of switching among multi-
ple players (some of which may not be installed) to view the search results 
is less than seamless. Therefore many systems have opted to transcode 
video to a common format and host it. Flash Video is often the format of 
choice here due to its platform independence and wide installed base of 
players. The term transcoding is loosely used to refer to changing con-
tainer formats, encoding systems, or bitrates. Transrating refers to chang-
ing only the bitrate (typically via re-encoding, not using scalable coding or 
multirate streaming). In some cases it is not necessary to fully decode the 
media streams and re-encode them, such as when changing only the con-
tainer format. Also, the re-encoding process can be made more efficient by 
only partially decoding the source (perhaps re-using motion estimation re-
sults), but in many general purpose transcoding systems, the source is fully 
decoded and the results fed to a standard encoder. This approach is taken 
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because the required decoders and encoders are readily available and have 
been highly optimized to perform efficiently. Also, search engines may 
transcode to a small set of formats in order to target different markets such 
as mobile devices (e.g. YouTube’s use of Flash Video required large scale 
transcoding in order to support AppleTV® and iPod Touch® which did 
not include support for Flash Video). 
 

3.3.4 Rights Management  

In addition to incompatible media formats, digital rights management 
(DRM) systems are not interchangeable, and systems that hope to process 
a cornucopia of content must navigate these systems as well. Various 
DRM systems such as Apple’s FairPlay and Real’s Helix can be applied to 
MPEG-4 AAC media, but this does not imply interoperability. While it 
would be in keeping with the sprit of DRM to allow the purchaser of a 
song (or a license to a song) to enjoy the media and justly compensate the 
provider, in practice this notion has been restricted so that the user must 
enjoy the song on a single vendor’s device or player. MPEG-21 attempts to 
standardize the intent, if not the particular implementation, of rights 
through the definition of a rights expression language (REL). Examples of 
limited rights to use content include play once, play for a limited time, 
hold for up to 30 days and then play many times for up to 24 hours after 
the first play. The hope is that at least these desired use cases can be codi-
fied even though a particular media player device may only support a lim-
ited number of DRM systems or only a single system. In reality, choosing 
a DRM system is tantamount to choosing a media player. Purchased music 
and media (iTunes, Windows Media), video download services, DVDs and 
broadcast television all have forms of encryption for prevention of unau-
thorized copy of content (CCS, AACS for DVDs, conditional access for 
DVB and Cable, broadcast flag for ATSC). Finally, media watermarking 
and embedding user information in metadata to enable forensic traceability 
of a copied asset to its source are additional techniques used to preserve 
the copyright owner’s rights. 

 

3.3.5 Redirector Files 

Video search engine systems can make use of redirector (or “metafiles”) to 
provide increased functionality when initiating video playback. Instead of 
the user interface containing links directly to the media files, the links 
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point to media metafiles which are small text markup files issued by the 
HTTP server with a particular MIME type that is mapped to the client me-
dia player.  At this point the browser has done its job and control of the 
streaming session is passed to the media player which connects to a media 
server. This arrangement provides several advantages: 

 Response time: the small files download instantly and the media player 
application can launch quickly and begin video playback using 
progressive download or streaming. 

 Failover / Loadbalancing: The redirector files can include alternative 
URLs for retrieving the media and media players support a failover 
mechanism where connection to servers indicated by a list of URLs is 
attempted in sequence. Applications can also generate metafiles 
dynamically with URLs pointing to lightly loaded streaming servers if 
the desired media is avalible on multiple media servers. 

 Playtime offsets / clipping: the media play time start and duration can be 
encoded in the metafile. The ability to seek into the media is critical for 
directing users to relevant segments in long-form content. 

 Playlists / Ad insertion: sets of media files matching user quieres can be 
represented as a play list and interfaces supported by the media player 
can be used to navigate amoung them. Preroll or interstitial advertizing 
can be supported using this mechanism – where essentially one or more 
clips in the playlist are ads. Much to users chagrin, these clips can be 
marked so that the ability to skip or fastforward are disabled during 
playback of ads. 

 Additional features: Optionally, directives for including media captions 
(similar to closed captions) are supported. Also, metadata specific to the 
session can be included, e.g. the title can be set to “Results for your 
query for the term: NASA.” This mechanism can be used to effectivly 
override any metadata embedded in the media itself. 

 
Table 3.2. Media metafile systems. 

Format Extension Comments 
Real Audio Metafile .ram One of the early streaming Web 

media formats 
Windows Media Metafile .asx, .wmx, 

.wvx, .wax 
Extensions connote video (v), and 
audio (a) but the format is the 
same; ‘asx’ is deprecated 

Synchronized Media In-
formation Language 

.smil, .smi Supports many additional features 
such as layout. 
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Some common file formats or protocols for achieving this effect are shown 
in  

Table 3.2; also the playlist formats such as M3U and PLS provide a 
somewhat similar function, but with a limited subset of the capabilities. 

Fig. 3.1 shows a Windows Media Format metafile that includes failover 
(if the media is not available from mserver1, then mserver2 will be con-
tacted). Also the media play position is set to 120 seconds. For Quicktime, 
a “reference movie” can be created to point to different bitrate versions of 
the content. A Reference Movie Atom (rmra) can contain multiple 
Reference movie descriptor atoms (rmda). 

 

 
 

 
<ASX version = "3.0"> 
 <Entry> 
  <Ref href="http://mserver1.company.com/media/video1.wmv"/> 
  <Ref href="http://mserver2.company.com/media/video1.wmv"/> 
  <StartTime Value="120"/> 
 </Entry> 
</ASX> 

 
Fig. 3.1. ASX Metafile with failover and start offset.

Embedded players: While UIs that launch the media player using meta-
files can be extremely lightweight (no client side JavaScript is required) 
and therefore easily supported by a wide range of browser clients, a more 
integrated user experience is achieved by embedding the media player in 
the browser. With this approach, the player plug-in loads once and user 
navigation of search results can change the media and change the play po-
sition. For example Fig. 3.2 shows a client side script fragment for loading 
a media stream and seeking to a given point using the Windows Media 
Player object model, assuming that the player has been embedded and 
named “Player”. More recently, immersive interfaces that provide a user 
experience more similar to TV have been created leveraging emerging 
technologies including AJAX, XAML, and using the graphics capabilities 
of clients to their full potential to provide full screen interfaces with over-
laid navigational elements. 

 

 Player.URL = “http://server1.company.com/media/video1.wmv”; 
 Player.controls.currentPosition = 120; 
 Player.controls.Play(); 

Fig. 3.2. Controlling media playback using client side scripting. 
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3.3.6 Layered Encoding 

Some encoding systems include features to efficiently support scalability. 
Scalability encompasses several varieties including spatial, temporal, and 
even object scalability. The idea is to encode media once and enable mul-
tiple applications where views may be alternatively rendered for services 
with bandwidths less than the media encoded bitrate. The concept also 
supports the notion of a base layer and an enhancement layer where the 
base layer may represent a lower resolution or lower frame rate version of 
the media and the enhancement later can include more detail. In a best ef-
fort network delivery scenario with variable congestion, the base layer can 
be delivered with a guaranteed quality of service (QoS), while the en-
hancement layer can use a lower priority so that the overall system user 
experience will be improved. (Rather than one user – or worse all users – 
experiencing video dropouts, all users may see a slight degradation in 
quality).  

Some media streaming systems use a less efficient scheme to provide a 
similar effect. Using what is called “multirate encoding,” multiple versions 
of a video encoded at different bitrates are merged into a single file. Some 
implementations of this can be very inefficient, in that each stream is self-
contained and doesn’t share any information from the other representations 
of the media. Streaming media players can detect connection bandwidth 
dynamically and switch among the streams as appropriate. While crude, 
this improves the situation over the case where the user must select from 
separate files based on their connection bandwidth. Most users don’t have 
a good understanding of their connection bandwidth in the first place and 
requiring a selection choice is poor system design which can lead to errors 
if the wrong setting is chosen. 

Illustrated audio is a class of content that fills the gap between full motion 
video and a bare audio stream. There are two main classes of this; the first 
is frame flipping where a single still image is displayed at a given point in 
time until the next event where a different frame is displayed. This can be 
thought of as non-uniform sampling: instead of each frame being displayed 
for the same amount of time, e.g. 33 ms, a frame may be displayed for 20 
seconds followed by a frame displayed for 65 seconds, etc. An example of 
this is a recording of a lecture containing slides. The second class involves 
some form of gradual transition between slides and may include synthe-
sized camera operations such as panning and zooming. Some replay sys-

3.3.7 Illustrated Audio 
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tems for digital photographs employ this technique using automatically se-
lected operations. Readers may also be familiar with the historical docu-
mentary style of Ken Burns where old photographs are seemingly brought 
to life through appropriate narration and synthesized camera operations 
[Burns07]. 

The value of this form of content has justified the creation of systems 
designed for efficiently compressing and representing this unique material. 
Microsoft’s Photo Story application allows manual creation of slide shows 
from still frames and encodes the result in Windows media format with a 
special codec. Alternatively, the Windows Media Format allows for syn-
chronous events to be included in the stream which may include links to 
images or may encode generic events that can be accessed via client 
JavaScript at media replay time to take action (which may also include 
fetching an image from a URL and displaying it).  

Apple’s Enhanced Podcasts are MPEG-4 files with streams containing 
specific information that allows for the inclusion and synchronized replay 
of embedded still images (as well as other information such as links) that 
can be replayed on iPods. These files typically have the extension .m4a or 
.m4b. The points in the media where the images are inserted naturally form 
waypoints for navigating in the content, and Apple emphasizes this by re-
ferring to these points as chapter markers and exposing this up through the 
user interface of iTunes® and iPods®. Other formats also support chapter 
metadata such as ID3v2 which specifies CHAP (Chapter) and CTOC (Ta-
ble of Contents) and the DVD specification. In Flash video, the “Cue 
Point” mechanism is used for synchronizing loading of graphics and pro-
viding for navigation of the media. 

For video search engines, textual chapter metadata can augment the 
global metadata and can improve relevance ranking and navigation for sys-
tems that support navigating within long form content. Additionally, where 
archiving systems manage wide varieties of content and adapt it to produce 
content for consumption scenarios where the primary media track is audio 
(i.e. mobile listening), the ability to automatically insert chapter markings 
to aid user navigation is extremely valuable. 

 

3.4 Media Captioning   

We have already seen how captioning can be exploited for video search, 
but further, video search engine systems and IP media systems should pre-
serve any captioning that accompanies the ingested source media in order 
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to reach the broadest possible audience. Again, it is important to point out 
that captioning is not just for the hearing impaired, but can improve com-
prehension and enable media consumption in a wider range of environ-
ments (e.g. meetings). Most IP media formats support some form of timed 
text and these were covered in detail in Chapter 2. The National Center for 
Accessible Media at WGBH pioneered television captioning [Robson97] 
and has recently formed the Internet Captioning Forum with industry lead-
ers. The Distribution Format Exchange Profile (DFXP) is a subset of the 
Timed Text Authoring format intended to aid in interoperability of existing 
legacy formats. While its scope is limited, the specification includes 
enough generality to support a very wide range of existing captioning 
presentations (perhaps only exclusive of sign language representations) so 
it is not trivial by any means [TT06]. 

 
 

3.5 Conclusion 

 
We have presented many of the practical aspects of digital video that con-
tent-based video search engine systems must deal with in order to operate 
seamlessly on a wide variety of content sources. At the basic level, issues 
of encoding and container file formats, and DRM systems must be taken 
into account in the system design. Next, presentation issues such as aspect 
ratio and transcoding for archival storage and delivery for a range of appli-
cations must be considered in the design of user interfaces for search.  We 
also introduced methods for creating networked user interfaces for media 
replay with thin clients such as media players with dynamically generated 
playlists or browser plug-ins. Beyond the basic input and output media 
handling and rendering, systems that operate on the video content must 
also deal with real-world issues such as subsampled, noisy chrominance, 
non-square pixels and various temporal sampling rates. While a theoreti-
cian might correctly dismiss many of these issues as engineering decisions 
arising from legacy (or worse, commercially motivated proprietary and in-
compatible) implementations, some are related to basic principles or 
physical properties. There are limits to the fractional bits per pixel to 
which video can be compressed and the signal to noise ratio of imaging 
devices. 
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4 Video Search Engine Systems 

4.1 Introduction 

All search engine systems share a common architecture at a high level, but 
vary widely depending on the application and design choices. In general, 
there are three main architectural components as we view the system from 
a content flow perspective: content acquisition, processing (indexing), and 
retrieval (see Fig. 4.1). In practice, these are typically decoupled independ-
ent processes in order to ease scaling. We will also consider the system 
from a user activity perspective in which we can consider behaviors and 
system states. 
  

Acquisition Queue 

Media 
Processing & 

 Indexing 

Source 
Content 

Source 
Content 

Source 
Content 

Repository 
Query 

Processing 

Index 

Control & Policies 

Clients

 
Fig. 4.1. High level architecture of a typical video search engine. 

 
Acquisition refers to bringing source video content into the system and 

positioning it for subsequent indexing. This may involve copying the bulk 
media to local storage as in a traditional text search engine, or other mo-
dalities such as user contribution or even capture of live feeds. Acquisition 
is constrained or configured; for example, a list of content sources or RSS 
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feeds may be used. Content providers may use the Outline Processor 
Markup Language (OPML) to create lists and publish them to search en-
gines. Even in the case of a general Web crawl, the prior state of the crawl 
is used to direct future content location attempts, so the process is not free 
of constraints. Efficient crawling is well studied [Cha03] and like other as-
pects of scalable search, is typically implemented in a distributed fashion. 

Content or media processing is the next logical stage in the content flow 
and involves transcoding, metadata manipulation, extraction and augmen-
tation through media analysis methods. The goal is to capture the media 
structure and metadata in data structures that enable rapid retrieval and 
content adaptation. 

The third major functional block from a content flow perspective is re-
trieval where a query engine responds to user requests in a real-time inter-
active mode. The results are exposed through one or more user interfaces 
and multimedia summaries or contextual information may be generated to 
improve the user experience. In addition to real-tine query handling, mod-
ules for personalization or data mining can operate on the stored multime-
dia collection in an offline fashion to produce customized views or analyti-
cal results for users. 

4.2 Content Acquisition 

4.2.1 Metadata Normalization  

The acquisition module typically performs some degree of data normaliza-
tion, although this can be deferred to the indexing module. The goal of 
metadata normalization is to simplify the rest of the system by mapping 
tags with similar semantics to a single tag. Unfortunately, for many sys-
tems this is a lossy process since nuances in the source metadata may not 
be preserved accurately. For example, the search engine may list all results 
with their title, but for some content, a subtitle or episode title may be in-
cluded in addition to the main title. Either this subtitle information is 
dropped, or somehow mapped into another supported field, perhaps using 
a tag thesaurus, such as the content description field – or some convention 
may be adopted to concatenate the subtitle onto the main title. All of these 
alternatives generate undesirable consequences – either the field in ques-
tion is not available for search, or in the concatenation case, the original 
tag may not be recoverable from the database. The ideal situation is to pre-
serve all source metadata, while extracting the reliable common tags such 
as the DCMI fields and utilizing a searching and browsing architecture that 
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can seamlessly manage the complexity of assets having varying numbers 
and types of metadata fields – a daunting task to achieve at scale. Many 
systems in use on the Internet today fall short of the ideal case, but still 
provide an adequate user experience. 

4.2.2 User Contributed 

Content acquisition for the user contributed case is shown in Fig. 4.2. 
Here, a Web form is used to capture metadata from the user, and the media 
is transferred up to the server. The upload file transfer may be simple 
HTTP, or a special purpose client application maybe utilized which pro-
vides additional benefits such as parallel uploading, ability to restart 
aborted partial transfers, etc. Note that it seems logical given limited avail-
able upload bandwidth to transcode source media down to a smaller size 
prior to uploading. However, most systems designed for Web users do not 
employ client-side transcoding for a number of reasons including:  

1. the desire to keep the client as thin as possible to ease maintenance;  
2. the desire to support clients with limited compute power; 
3. possible license issues with codecs; 
4. the assumption that video clips will be short, limiting overall file 

upload size.  

Metadata 
Form 

Media 

Index  

Media 

Client (User) 

Uploader 

Service 

 
Fig. 4.2. Data flows for uploading user contibuted content. 

The metadata entry may be decoupled such that the content is uploaded, 
and metadata tags added later either by the original author, or by other us-
ers (social tagging). Consider here the example of mobile video capture 
and share. The service can be such that the capture format is supported for 
upload (avoiding the necessity for transcoding on the mobile device), and 
users could access their clips from a laptop where annotating, forwarding 
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to friends, etc. is much easier given the powerful user interface capabilities 
of the laptop as compared to the cellular handset. Contributors control the 
publication of, and rights to use (view or download), the content using 
categories such as: 

1. Public: available to all users; 
2. Groups: viewable to selected users; 
3. Unlisted: unpublished; a URL is returned to access the content. 
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Fig. 4.3. Metadata and media flows for Podcast aggregation search. 

 

4.2.3 Syndicated Contribution 

Although we mentioned embedded metadata and introduced the concept of 
asset packages, which represent media and metadata as a logical unit, it is 
usually the case that the metadata and the media take separate paths 
through the acquisition, processing and retrieval flow. Perhaps the most 
striking example of this is the case of Podcast aggregation search sites.  As 
shown in Fig. 4.3, it is not even required that the server ingest a copy of 
the media, the system can operate using only metadata provided by the 
source. In this case, the concept of acquisition really consists of creating a 
new record in the database with an identifier of some kind, perhaps a URI, 
referring back to the content source. It is most common to use RSS with 
media enclosures for the metadata formatting, with the iTunes® extensions 
for Podcasts or MediaRSS extensions for increased flexibility. Of course, 
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our focus is on media processing to augment the existing metadata to en-
able content based search, in which case access to the media is required.  

With distributed (meta) search, there is even less centralization and data 
movement. Rather than querying content sources for lists of new content 
and its associated metadata periodically and building a centralized index, 
metasearch systems can distribute the queries to several search systems 
and aggregate results. The problem of merging ranked results from dispa-
rate sources as well as duplicate removal present themselves in these sce-
narios. 

 

4.2.4 Broadcast Acquisition 

In addition to crawling, syndication, and user contribution, other forms of 
acquisition include broadcast capture and event based capture. Broadcast 
capture may involve analog to digital conversion and encoding, but it is 
becoming more common to simply capture digital streams directly to disk. 
For consumers, broadcast may be received over the air, via cable, via di-
rect broadcast satellite, through IPTV or Internet TV multicast. Event-
based acquisition is used in security applications where real-time process-
ing may detect potential points of interest using video motion detection 
and this is used to control the recording for later forensic analysis. It is in 
the context of these streaming (or live, linear) sources that real-time proc-
essing considerations and highly available systems are paramount. In the 
previous examples of acquisition that we were considering, there is effec-
tively a source buffer so that if the acquisition system were to go offline 
the result would only be slightly delayed appearance of new content – for 
streaming acquisition, this would result in irretrievable content loss. Of 
course, for user contributed situations high reliability is also desired to pre-
serve a satisfying user experience. 

A particular set of concerns arise with user contributed content, and ap-
propriate mitigation steps should be taken prior to inserting UGC into the 
search engine for distribution. Users may post copyrighted material, inap-
propriate or offensive content and may intentionally misrepresent the con-
tent with inaccurate metadata. Sites may employ a review process where 
the content is not posted until approved, or may rely on other viewers to 
flag content for review. Fingerprinting technology is used to identify a par-
ticular segment of media based on features, and this operation can take 
place during the media processing phase to reject posting of copyrighted 
content. 
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4.3 Content Processing 

 
Newly acquired media is available in a state that facilitates subsequent op-
erations on the media such as transcoding and metadata extraction. 
Transcoding engines may operate independently on the content with the 
goal of preparing the content for delivery (perhaps via streaming) and 
normalizing to a single format suitable for archiving. We can consider a 
path for the media separate from the path for the metadata. The media will 
be positioned on user-facing media servers or origin servers for content 
distribution. Metadata will head to the index and storage for use in brows-
ing (Fig. 4.4) and be tied together using content identifiers. 
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Metadata for 

Indexing 
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age / Delivery 
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Fig. 4.4. Metadata augmentation via automated content processing. 

 

4.3.1 Asset Management 

We’ve presented a one-directional data flow model for content ingest and 
processing, but we did allude to other alternatives. Certainly, social tag-
ging is architected such that the asset is not simply posted into the database 
and then read out for consumers. The asset metadata effectively continues 
to grow via repeated annotation by the end users. In fact, the viewers be-
come authors in a sense; they alter the content and add value for subse-
quent viewers. So there is a feedback loop for additional metadata annota-
tion. An interesting example of this phenomenon is dotsub.com where 
users translate Web media and create subtitles that are made available via a 
flash player.  One may even consider the act of viewing an asset as a 
source of additional metadata about the asset. Systems can log the number 
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of views, fast forwards, etc. for each asset. Similarly, we may consider sys-
tems where the annotators are not casual Web users seeking entertainment, 
but rather professional annotators logging content, perhaps with specific 
business purposes in mind. The architecture is somewhat similar, in which 
an asset is entered directly into the database, and the metadata is added 
later. For these systems, content management systems (CMS) architectures 
may be employed where a bus connects various Web service enabled com-
ponents and workflows are defined for a range of applications (Fig. 4.5.) 
The terms Digital Asset Management (DAM) or Media Asset Management 
(MAM) are also used to indicate a more specific type of CMS. Additional 
automated post processing operations such as importing transcripts or sub-
titles which may not be available at the time of ingest can be implemented 
as independent execution threads – reading, processing to create additional 
metadata, and rewriting to update the asset record. This decoupled process-
ing is used for cases where real-time processing is not practical given ex-
isting hardware resources, and where content is not arriving at a continu-
ous rate.  

 

… 

Trans-
coding  

Storage Applications 

Annotation 
Metadata 
Extraction  Ingestion  

Services Bus

Fig. 4.5.  Services oriented architecture for content processing. 
 
The range of options for metadata extraction operations on media is vast 

and still growing as new media analysis algorithms are developed.  These 
will be discussed in detail in later chapters, but will typically involve de-
multiplexing streams, decoding and performing computationally intensive 
operations. Also, with any system that handles video, data bandwidth is a 
concern and careful system design is required to minimize data access and 
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transport throughout the system. Unfortunately, it is challenging to design 
a flexible system that can operate at scale to support comprehensive video 
search. As a result, many search engines today deal solely with high-level 
metadata, and the extent of their media processing is limited to transcoding 
and representative image selection.  

 

4.4 Retrieval 

 
The Extensible Markup Language (XML) is well suited for representing 
the extracted metadata, along with any metadata that accompanies the 
source asset and any additional metadata that is added over the life of the 
asset while in the repository. While many metadata systems can be used 
for high-level metadata, there is really only a single standard intended for 
representing media features for content based indexing applications, 
MPEG-7. For audio indexing, [Kim05] describes representing spoken con-
tent descriptors in MPEG-7 as well as low-level audio features and their 
use in classification and similarity metrics. 

For efficient handling by the operating system and streaming media de-
livery systems, several files may be used for each asset – one for the en-
coded media representation for distribution, a JPEG thumbnail file for 
browsing and a metadata file in XML format. Of course, other optimiza-
tions are possible: for example, a system can be designed to minimize the 
number of individual files by embedding metadata within the stream. The 
thumbnail image can even be embedded as a digital item in the stream or 
key images can be extracted from the video dynamically. The commonly 
encountered trade off between compute and storage resource applies here 
as well, and schemes that create and cache temporary files as needed may 
be efficient solutions. For example, consider a video sharing site that uses 
Flash as the primary distribution format, but also supports downloading 
MPEG-4 versions for use with portable media players. The service can 
transcode all content for rapid response at the expense of storage, or 
transcode on demand in response to users requests. In the latter case, for 
popular videos where many user transcode requests are received, transcod-
ing need only be performed once and a cached version of the file will ser-
vice subsequent requests in order to reduce system compute load. 

The XML metadata representation is ideal for transferring information 
between systems, and for archival storage where additional metadata may 
be added over the life cycle of the asset. However, for performance rea-
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sons, many systems perform a translation from XML into a traditional 
DBMS (database management systems) approach, at least for high-level 
metadata. Generating index structures for more fine grained rich media 
metadata is a research topic in itself and efficient solutions can be achieved 
for certain cases. Traditional database systems are optimized to respond to 
queries on multiple fields and return exact matches. A match is well de-
fined, and may be extended to include a range or to support some invari-
ance such as ignoring text case. These systems can be successfully used for 
tag-based multimedia retrieval, but for content-based retrieval we must ex-
tend this capability to support similarity search. Note that we desire se-
mantic similarity which may be subjective and at any rate, can only be ap-
proximated algorithmically today. Many multimedia DBMS store features 
as blobs (binary large objects), perhaps with an application specific simi-
larity metric defined on them. The general problem of constructing indices 
for rapid retrieval based on high dimensional features is a fertile area of re-
search. For example, [Sant02] explores schema design based on feature 
substructure to facilitate k-NN and range searches, and Lu [Lu98] dis-
cusses performance metrics for multimedia database systems and shows 
that commonly used metrics may sometimes provide conflicting indica-
tions of system performance. For the interested reader, Lu [Lu99] covers 
many aspects of multimedia database systems design and [Sub98] includes 
an example of including a movie in a traditional database. Large scale 
video search implementations can tax even well-designed traditional data-
base systems and lightweight efficient approaches designed to cope with 
scale [Greer99] can be effective solutions, particularly when extended with 
support for heterogeneous data represented in XML [Amer02]. It is impor-
tant to bear in mind that video archiving with mainly textual queries is not 
a typical DBMS task; large swaths of the traditional database infrastruc-
ture, such as ensuring transactional consistency, are not required. For Web 
search, the act of deleting a record is so infrequent that it is almost not a 
requirement to implement. 

 
 

4.5 User Perspectives 

4.5.1 Interaction States 

Let’s consider how a user interacts with a video search engine. We can 
model this as a set of behavioral states as shown in Fig.  4.6 where the re-
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trieval activities are shown in white and the contribution activities are 
shown in grey. The states are as follows: 

 Q: Query – the user is presented with a query interface (e.g. a text box 
in an HTML form) and must formulate or express the query to the 
system. 

 B: Browse – the service presents a set of rank ordered results in 
response to the query. Metadata and thumbnail images are displayed as 
a list and the user can interact via scrolling, paging, etc. 

 V: View – the user has selected a particular item and the system initiates 
video playback using a media player. 

 A: Annotation – the user may tag, rate, review or otherwise comment on 
the video. 

 E: Edit – the user composes a video using a video editing tool, editing 
both the content and the metadata. 

 U: Upload – the user publishes their video content and provides 
directives for intended audience, content categories, etc. 

 
Fig.  4.6. User activities during video search and contribution. 

 
In the figure, only the primary flows are indicated and sites typically al-

low users to navigate among all the states at will. Also the flow implies a 
traditional capture–edit–upload content contribution flow (capture is not 
shown here) which is typical of most user contributed content and profes-
sionally produced Web video content. While most video editing today 
takes place locally prior to contribution, many sites offer video editing of 
content stored remotely up on the server, so we have included this in the 

Q B V A 

U E 
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figure where it is implied that there are Web applications that support each 
state. This user interaction flow follows the classical model (which can be 
exploited to improve performance [Agi06]) but does not capture concepts 
commonly employed such as personalization based on user preferences, or 
the notion of a portal displaying popular or promotional content. The latter 
case can fit the model here as a special case of the browse state which the 
user enters with a null query or as an initial state. Further, many systems 
are constructed to support parallelism in the user interaction. For high-
performance retrieval applications, or for immersive entertainment focused 
applications, perhaps where full-screen video replay is employed to pro-
vide a lean-back, TV-like experience, one or more activities can take place 
simultaneously. In this scenario the video is “always on” and the user may 
guide the thread of replay using queries or browsing to other selections as 
an alternative to using the “channel-up” button on their TV remote control. 

 

4.5.2 Granularity of Search Results Representation 

As we imagine the user navigating through this list of relevant content 
identified from a vast sea of video material, we can think in terms of a play 
list – or an edit decision list. In the former case, the system selects content 
in response to user queries, and rank orders them for replay to the user. In 
the latter, relevant segments are identified and selected including “in” and 
“out” points.  
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CIDn 
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Time 

 
Fig. 4.7. Levels of granularity for representing video search results. 
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As shown in Fig. 4.7, systems may supply additional information to rep-
resent the matches to a user query. The figure depicts a result set with con-
tent of different length and a potential path (dashed line) for playing out 
the media to the user. The levels represented here are: 

1. Sets of content identifiers (CIDs) indicating which assets in the 
database match the user query. 

2. Lists of clips specified by offset and duration or in and out points 
(shown in grey) indicating the most relevant segments of each media 
file. 

3. Lists of “hits” or feature-level matches. For text, using word features, 
these are the matching words or phrases to the query; in the case of a 
high-level image concept, these may be matching video frames. So 
these “hits” while represented in the figure as impulsive events, may 
indeed have an implicit duration, albeit small – at the word or frame 
level. 

Note that the figure implies a binary (thresholded) decision as to what 
constitutes a match, but systems may also preserve a measure of the likeli-
hood of match for each level. Application designers must bear in mind that 
the accuracy of such measures may be difficult to determine accurately. In 
our example, we may decide that the second clip in CID1 is of lower rank 
and should be omitted from the playback. We have lists of identifiers, and 
lists of temporal intervals with measures of match value. Further, the por-
tion of the query that generated the match can be represented, as can be the 
portion of the content (e.g. the spatial coordinates of a region of interest of 
an image containing a face that matches a query.) For practical reasons, 
many systems discard this detailed query match information as quickly as 
possible during the stages of query processing and rendering of results. 

4.6 Factors Concerning Scalability  

4.6.1 Introduction  
In the process of designing a content indexing and retrieval system, several 
factors influence the scalability of the system and basic choices can have a 
great effect on the cost required to support a given user base. Of course, 
the fundamental design decision of referring video playback requests back 
to the originator as opposed to keeping a local transcoded copy of the 
video results in an entirely different class of service with commensurate 
costs of operation. The following list of scalability factors assumes a con-
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tributed model with local storage, but most of the basic factors relate to a 
wide range of video search applications: 

4.6.2 Acquisition 

 Content arrival rate / variability: On average, how many assets are 
posted to the system for indexing for a given time interval? How does 
this vary over the course of a day or week? What is the peak arrival rate 
during busy hours? 

 Content average duration: The duration of the content (posted video 
clips) effects the processing time. 

 Aggregate incoming content bit rate: Low bit rate clips will reduce 
required incoming bandwidth, but the resulting lower quality will 
negatively effect content based indexing performance and transcoded 
video quality. Google video suggests using the highest quality available 
to typical consumers (5M MPEG-2, or 2M MPEG-4) [Goo07]. 

4.6.3 Processing 

 Real-time factor: as mentioned above, the types of processing indexing 
operations can vary widely, from simple metadata ingest to 
sophisticated feature extraction and content analysis. Transcoding is 
also considered to be a media processing operation. Once a particular 
palette of processing operations is selected, there are tradeoffs within 
each in terms of accuracy vs. speed. A key performance metric is the 
real-time factor, or ratio of wall clock time to media time; to put it 
another way, how long does it take to process content of a given 
duration on a typical server? 

 Latency constraints: The number of processing servers required is a 
function of not only real-time factor, content arrival rate and variance, 
but also the maximum allowable delay from content acquisition to 
publication. Continuous content acquisition and processing applications 
such as broadcast monitoring are characterized by a fixed system 
latency, but for user contributed or syndicated sources, the service can 
be configured to accommodate the average content arrival rate. Users 
who post content during busy periods will experience more delay in 
processing, and the perceived quality of service is a function of the 
maximum and typical processing delays that a user experiences. Note 
that for international services, there may be too few appreciable quiet 
periods for services to exploit to effectively “catch up” (reduce 
processing queues). Also, processing priority schemes can improve the 
global user experience, at the expense of a small number of users. For 
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example, instead of a first come, first served (FIFO) policy, short 
duration content can be processed before longer content, or new content 
from a traditionally popular source can be given higher priority. 

4.6.4 Storage  

 Archival media bit rate and encoding parameters: Regarding 
storage, the single most important factor by far is the size of the bulk 
media which is governed by the transcoded bit rate, or if the original 
content is preserved, the policies regarding uploaded media such as  
allowable bit rate and media duration. Many systems effectively archive 
the distribution format, that is to say that the distribution format is 
created once and maintained as the primary source in the archive. In this 
case, we must take into account considerations such as bit overhead for 
support of random access (such as short GoPs), forward error correction 
or bitrate scalability. 

 Alternative media representations: Are transcoded versions of each 
asset to be created to support a wide range of devices for playback? For 
the best user experinces across all devices today, multiple streams are 
required.  

 Broweable representations: Key frames used to create visual 
interfaces for users are the next most significant storage cost. In the 
extreme, it is possible to omit these altogether, and perhaps maintain an 
icon image for each series of programs, but this greatly detracts from the 
overall user experience. Some options for typical solutions include: 

- a single thumbnail for each asset; 
- key frames sampled uniformly or based on the video content; 
- visual summaries that include motion video. 

For each of these options, the spatial resolution of the representative im-
ages is an important design tradeoff between storage and quality of user 
experience. A similar tradeoff exists regarding the number of retained 
key frames for each asset. Longer video summaries may help users iden-
tify relevant videos in query results and additional key frames will in-
crease the precision with which users can visually position long form 
content for playback. Note that to save long-term storage space, it is 
possible to dynamically extract these representations from the bulk me-
dia as the visual interface is rendered, perhaps with caching but this ad-
ditional complexity is not typically justified. However, visual browsing 
within a single asset, using a more capable media player to render visual 
navigation points is practical. 
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 Content description bit rate: In many existing systems such as RSS 
aggregation search engines, the number of bytes used in the XML 
representation of the metadata is negligible in comparison to the media 
since only global, high level tags are used. However, as more and more 
timed metadata is included such as chapter titles and transcripts, the size 
of the description will grow in proportion to the length of the content, 
and we may speak of a content description bit rate. While textual 
descriptions compresses effectively using MPEG-7 BiM for example, 
other, lower level media features such as phonemes or lattices may not 
compress as readily. It is even possible for the content descriptions to 
exceed the size of the content (for example, if phonetic lattices are used 
for searching 8kHz telephone calls.) 

 Index storage: Derived from the content descriptions whether the form 
of an inverted text index or other structures for efficient retrieval of 
binary features, the size of the index eventually becomes an issue as the 
scale of the content grows. The index is generally maintained in a 
combination of high performance storage and memory so controlling the 
index size is a key system performance driver.  

4.6.5 Retrieval 

 Peak simultaneous users: As in any Web application, the primary 
metric determining scalability of the retreival subsystem is the number 
of simultaneous users at peak usage times. We may further specify this 
as the number of users supported per server since replication with load 
balancing can be used. 

 User activity duty cycle: The retrieval user interface can be crafted 
such that the user spends varying amounts of time performing the 
actions of query, browse, and viewing video (see Fig.  4.6. User 
activities during video search and contribution) for a given session, 
and these states consume different sets of system resources. For 
example, viewing video puts no load on the query engine, but taxes the 
media delivery subsystem. On the other hand, if appropriate context is 
provided for query results, replay requests for undesired video can be 
minimized. 

 Output user interface bandwidth: Rendering rich media user 
interfaces heavy with still images or flash animations can result in large 
“pages” or a large amount of interactive content outbound from the 
service. 

 Output media bandwidth: By far the largest overall consumer of 
outbound bandwidth is the replay of the media itself. At its core, video 
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search is essentially a VoD application and optimizations for system 
resource utilization (caching of popular content based on Zipf 
distributions, etc.) have been well studied [Chang97, Yu06]. In addition 
to the codec selection and transcoded bitrate, other transcoding 
parameters such as VBR or selection of short GoP to improve random 
access will effect the video quality vs. output bandwidth. 

 Rate of stream control requests: Streaming systems supporting rapid 
start may burst data at a higher rate than the average bit rate at start or 
after seek requests. If the service is designed such that users rapidly 
request many videos, as opposed to passively watching long-form video, 
the load on the server and the total output bandwidth will be increased. 

4.7 Retrieval Interfaces 

As with text search engine systems, video search systems may support 
several interfaces to allow developers to create new applications, or for us-
ers to access the service using multiple client applications other than 
browsers such as RSS readers, gadget containers such as desktop sidebars, 
or mashups which combine multiple services.  

Systems may support interfaces including: 

 Web Services (WS) – The simple object access protocol (SOAP) used 
over HTTP and described by the Web Services Description Language 
(WSDL) provides a standard framework for interaction with services 
such as video retrieval, but the latitude enabled in architecture and 
parameter semantics implies that video search Web services are not 
interoperable in general. Some amount of new interface code is typically 
required when switching from one Web service to another. 

 Representational State Exchange (REST) – The REST presents 
architectural style [Field00] that can be applied to media search engine 
interactions. Flickr® for example, supports a REST API for photo 
retrieval. This design philosophy is highly robust (it describes the 
behavior of stateless exchange on the Web for example) but does not 
dictate a preferred language or syntax. 

 Asynchronous JavaScript with XML (AJAX) – AJAX can be used for 
rendering dynamic user interfaces, and the underlying requests to the 
video Web server may have a REST flavor and may utilize WS. 

 Real Simple Syndication (RSS) – Query results can be represented in 
XML using RSS, perhaps with specific namespace extensions as 
appropriate. This enables client-side persistent queries, in which the 
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results are typically sorted temporally (most recent first) to best fit the 
usage paradigm of RSS readers. 

 OpenSearch® – A9, an amazon.com company, developed  
OpenSearch® which provides a standardized query syntax that allows 
browsers and other applications to seamlessly support a wide range of 
search engine providers [Clin07]. Results are formatted in RSS and a 
paging mechanism is supported to allow stepping through large results 
lists efficiently. 

 SQL / XML Query – A video collection may expose an SQL interface 
and applications may connect using ODBC. The Microsoft Indexing 
Service is an example of a service that supports an SQL interface but 
with an underlying architecture that is more indexing oriented than a 
traditional database. Several XML query languages are available for use 
with metadata stored in XML such as MPEG-7. 

 Mini-applications (Gadgets, Widgets) – Microsoft’s Vista®, Google and 
Yahoo support interfaces to allow third parties such as video search 
engines to expose functionality through a small region of screen real 
estate in other applications or desktops. These are typically grouped via 
a sidebar. 

 Notification, e-Mail – Systems can support persistent queries stored on 
the server and notify users via e-mail. Users can elect to be notified once 
a day rather than multiple times as new matching content arrives. 
Servers must efficiently manage stored queries from a potentially large 
set of users, and possibly pool similar queries. 
 

4.8 Typical System Features 

We indicated notification as an interface, but this may be thought of as 
more of a “service” or feature than an API. Other features typically found 
in video search services include: 

 Favorites – saved searches where results may appear on the search 
engine landing page freshly executed with each visit. 

 History – access to videos recently viewed. 
 User preferences – capture and support user preferences such as 

explicit content filtering. In some cases bandwidth or media player 
preferences are stored as a cookie. 

 Cut-and-paste links – The service may make available markup suitable 
for rapid cut-and-paste into blogs or other applications to allow either 
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link back to the video search engine with the video of interest selected, 
or to insert a video plug-in to deliver the video. 

 Download – The ability for users to download the video with 
transcoding as appropriate for particular devices. 

 Annotation – ability for users to post persistent comments, rate or tag 
videos and make these annotations searchable. 

4.9 Conclusion 

 
We’ve seen that the basic structure of video search involves acquisition, 
media processing and retrieval systems. This basic architecture has paral-
lels in video on demand systems and media asset management (MAM) 
systems, albeit with different optimizations for the scale and features de-
sired. We presented options for video search engine architectures and sup-
ported features and APIs along with the associated tradeoffs for system re-
source utilization. Architectures have evolved as new technologies have 
become practical and widespread and we will no doubt continue to see ad-
vances in video search architectures going forward. 
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5 Media Processing 

5.1 Introduction 

The only media descriptions available for the vast majority of media pub-
lished on the Web today is global high level metadata. To differentiate 
themselves from systems that treat the described media payload as an 
opaque data file, individual systems must employ automated content proc-
essing. While specific processing methods have been optimized to handle 
particular media types, there are common principles that apply to some de-
gree across all media types. The field of digital signal processing includes 
several areas of focus including speech, audio, image, and video process-
ing. If we stretch the notion of signal processing from digitizing an analog 
waveform to include streams of symbols, we can consider text streams cor-
responding to the media dialog to be signals as well [Rab99]. Common 
media processing operations include noise reduction, re-sampling, com-
pression, segmentation, feature extraction, modeling, statistical methods, 
summarization, and building compact representations for indexing and 
browsing.  

In the previous chapters we discussed the practical issues of compres-
sion systems in use today as well as container file formats for media 
streams. We discussed media related text streams and formats including 
closed caption, subtitles, transcripts, etc. Here we will present at an intro-
ductory level, the common elements for media processing as it relates to 
content-based video search engine systems. In later chapters, we will ex-
plore in greater detail some of the most common methods applied to audio, 
video and text streams, and we will present multimodal processing where 
these media streams may be processed in a coordinated manner to achieve 
greater accuracy than is possible by processing the components individu-
ally. 

As we look into each media type in more detail, we will focus on feature 
extraction, segmentation, and information extraction. For us, the desired 
goal of media processing is to take largely unknown content and extract 
some level of structure and possibly semantics about the content. In the 
case of data mining, we might hope to obtain actionable information based 
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on this analysis. We will find that low-level feature extraction has been 
well studied and robust, efficient methods exist for operating on multiple 
media types, but moving to true semantics or meaning is successful only in 
restricted domains – where we have some domain-specific knowledge and 
perhaps have developed models based on similar labeled data. This diffi-
culty with the current state of the art in moving from low-level features to 
useful understanding of the media content is often referred to as the se-
mantic gap. 

Models 
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Fig. 5.1. Conceptual view of media processing. 
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Fig. 5.1 represents a hierarchal view of media processing for video re-
trieval applications and focuses on the case of shot boundary detection in 
particular. Each level is characterized by functional blocks with represen-
tative input and output data types shown. The scope of media processing is 
broad indeed, when one considers that similar “drilldown” views could be 
drawn for each of the other tasks such as speaker identification, text-based 
topic segmentation, etc. Representative features of color, shape descrip-
tors, etc. are shown and MPEG-4 is shown as an illustrative media source 
format. The results may be represented in an XML format such as MPEG-
7 as the figure suggests. 

 

5.2 Feature Extraction 

Feature extraction implies processing series of media samples (signals) and 
creating more efficient representations that will be eventually useful in de-
riving meaning about the content represented by the signals. Generally for 
media processing, this achieves a large data reduction, sometimes on the 
scale of several orders of magnitude. It is typically not practical or useful 
for all stages of media processing to operate directly on the samples that 
are intended primarily for regenerating the signal. The extracted features 
can be straight statistical measures such as mean or moments, but in many 
cases the features are intended to model human perception or physiology 
so more advanced transforms are used (e.g. Mel Frequency Cepstral Coef-
ficients). Note that the task of reducing data while retaining perceptually 
meaningful information is not only the goal of this stage of media process-
ing, but is also the goal of media compression. Therefore, in many cases, 
the same features are used and the theoretical basis as well as the algo-
rithms and implementations can be re-used. In fact, many practical media 
processing algorithms are designed to operate in the compressed domain. 
While the features optimized for compression are not necessarily optimal 
for analysis, they are reasonably good and a large measure of systems effi-
ciency can be realized by their adoption to provide double duty in analysis 
as well as compression. Although we mentioned the importance of data re-
duction, often the first operation for generating features can be a transfor-
mation, e.g. from the time / spatial domain to the frequency domain which 
is not necessarily inherently lossy. It is just that in this new space it may 
become more straightforward to truncate features in such a way that, when 
the inverse transform is preformed, results in minimal perceived signal 
degradation. Thus we can speak of a feature space in which samples are 
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represented as feature vectors. Typically we would like to keep the dimen-
sionally of the vectors as small as possible to improve system efficiency 
and perhaps generalizability, but in some cases high dimensionality is not 
an insurmountable problem, particularly when the feature vectors are 
sparse. One notable exception to the notion of data reduction is the case of 
query expansion, where there is typically a paucity of features – the source 
data may be a single word entered by a user – so it is desirable to appeal to 
ancillary data sources in an attempt to create additional features that may 
capture the intent of the query.  
     The problem of feature selection arises simply because it is generally 
easier to generate features than to determine which features have value for 
a desired application. It may not be computationally practical to use all ex-
tracted features, and in fact using all features may have a detrimental effect 
on the accuracy of the results.  
     In algorithm design, the invariance of the features must be taken into 
account. In image processing, scale, rotation and translation invariance are 
generally desirable. However, there may be limits imposed. For example, 
we may build a face detection system based on spatial relations of low 
level features, and then use the presence, location and orientation of the 
detected faces as higher level features for later processing in story segmen-
tation. We desire our face detector to be invariant to slight rotations of the 
face about an axis perpendicular to the image plane, but not if that rotation 
is on the order of 180 degrees (where the detector reports that the face is 
upside down – this is either an error or a situation of no relevance). 

 

5.3 Media Segmentation 

Segmentation is important for a number of reasons. The concept of seg-
mentation is to divide a stream of media into semantically consistent units 
and one benefit is increased efficiency in representation or compression. 
For example, in video compression shot boundary detection can be used so 
that difference frames are calculated within a shot instead of across shot 
boundaries, resulting in much smaller deltas. For representing content to 
users for rapid browsing, it is often desirable to remove the temporal ele-
ment, i.e. represent long, static segments with a single icon, but also in-
clude shorter segments with similar icons, such as in a light-table view. 
While the temporal aspect is not preserved, the viewer can immediately 
conceive of the basic semantic content of the video without having to parse 
redundant information. Segmentation also benefits information retrieval 
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since metrics such as TF/IDF are more accurate after text has been seg-
mented by topic. Consider a news program with five stories, one of which 
mentions NASA and the space shuttle many times, while the other stories 
are unrelated. The calculated relevance rank of the program will be re-
duced if the frequencies of occurrence are averaged over the entire pro-
gram.  

One of the challenges for practitioners of media processing in the con-
text of segmentation is to determine the appropriate level of granularity, or 
if multiple levels are to be maintained in the system, what is the appropri-
ate number of tiers in the hierarchy. At the base of this pyramid, we have 
the media samples themselves, and compression algorithms attempt to re-
move redundancy at this level. Moving higher we can extract low-level 
features based on small windows of time or space, typically on the order of 
10 milliseconds for audio, or corresponding to small homogenous regions 
of an image. Of course the definition of homogenous is a bit problematic: 
do we mean the same amplitude, same gradient, or for textures, the same 
periodic pattern? Moving a bit higher, we enter a realm where the ex-
tracted symbols may convey meaning, e.g. phonemes or words from 
speech recognition systems. Continuing in the speech domain for a mo-
ment, we encounter phrase or sentence segmentation tasks, and later topic 
or story segmentation. For image and video processing, we have object or 
foreground / background segmentation within a frame, camera operation 
detection, shot segmentation followed by scene segmentation – where mul-
tiple shots may take place in a single physical location. Farther up, for pro-
duced video programs, we have program segment (or commercial) detec-
tion and again story or topic segmentation, perhaps using cues from 
multiple media streams. Now, it is implicit that we can stop segmentation 
when we have reached the top: a single media asset or file. But what about 
episodic content? Does not each asset instance represent a segment of a 
longer narrative story where familiar characters reappear and evolve? And 
are not the productions of similar genre, or from the same source, some-
how related? This latter level of segmentation moves us out of the signal 
processing and statistical classification domain into database organization 
– typically we have labeled data in the form of an EPG to guide us here. 

 

5.4 Clustering, Structure Generation 

Assuming we have good segmentation, the notion of clustering or forming 
relations between segments using distance metrics arises. Consider a video 
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program where two participants are discussing a series of issues, and we 
have three cameras in the studio, one for close-ups of each speaker and one 
for a wide shot. We now successfully detect the cuts between the shots to 
segment the media into logically consistent chunks at a temporal level on 
the order of tens of seconds. However it is clear that another level of struc-
ture can be derived by analyzing the segmented media in order to associate 
related segments. In this case, we may discover a pattern that the producer 
has used to move between cameras: A,B,C,A,B,A,C, etc. where A and B 
represent the close-up views of each speaker and C is the wide shot. As a 
second example, consider the case where an editor is trying to produce a 
rough cut from rushes or repeated ‘takes’ of a particular scene. We may 
detect the start and stop of the camera, but we can also discover that there 
were five attempts to capture the first scene, and then eight attempts of a 
subsequent scene, etc. By analyzing the relative “distance” (or similarity) 
between subsequent shots we can derive this structure. In fact commer-
cially available editing systems can perform this function using audio 
cross-correlation assuming there is repeated dialog in each shot. This can 
be of great value for navigating and organizing the mass of raw footage 
during the editing process. This level of organization (aggregating repeated 
takes of a particular scene with or without dialog) has been the subject of a 
research evaluation undertaken by the National Institute of Standards and 
Technologies in a rushes summarization task [Over07]. Summarization via 
automated content analysis allows users to more easily browse long-form 
content by removing redundancy within an asset, and clustering across 
search results sets facilitates browsing of large media archives. 

Other important considerations should be borne in mind when evaluat-
ing media processing algorithms. Is the method rule-based, data-driven, or 
some combination thereof? Does the method involve the use of tunable pa-
rameters? How generalizable is the method? What are the storage vs. com-
putational performance tradeoffs? For natural language applications, rule-
based systems are generally quite useful when training data is not available 
but may become unmanageable as the complexity increases. Data-driven 
methods may offer the promise of managing this complexity in a scalable 
manner, but inevitably suffer from the problems that arise from the mis-
match of training data vs. the data encountered in the field. We can expect 
performance to degrade over time as this gap between training and testing 
datasets widens. Steps must be taken to adapt the existing models over 
time or to the new domains. Active learning may be effective to minimize 
the labeling effort while maximizing performance improvement. For data 
driven methods the definition of the labels (typically as defined in an anno-
tation guide) and their successful application by the labelers becomes an 
important factor in system performance. It is generally observed that more 
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labeled data is better, but high quality labeling of large datasets is costly. 
Again the more-is-better camp will argue that we can ask many labelers to 
label the same data and use techniques to derive a consensus labeling. Re-
cently it has been observed that the human power of the Web can be ex-
ploited, perhaps via game play scenarios, to build up large labeled data 
collections [Ahn06]. For these un-trained labeler situations, special effort 
is given to avoid tag synonyms, redundant or inconsistent labels, etc. Also, 
as we start to tap into the social capabilities available via the Web, we 
must also consider the practical limits to automated content processing. At 
some point, if our goals of media understanding are impractical, and if the 
value of the content is high enough, we run up against the alternative 
which is manual content description.  For example, if a speech recognition 
system only performs acceptably for broadcast news content, then this sys-
tem is of little value since most of this material is closed captioned or tran-
scribed already. Many DVD subtitles are translated manually (and volun-
tarily) and posted up to Websites, rendering the use of machine translation 
systems in this domain moot. 

 

5.5 Real-Time Processing 

For real-time processing applications, resource management is critical in 
order to achieve optimal performance. Distributed systems may be em-
ployed, but careful consideration of data bandwidth utilization is para-
mount. Event-based architectures can provide efficient system design and 
fit in well with publish/subscribe models [Wold02]. For user-contributed 
applications, we don’t necessarily have the issues associated with real-time 
processing of incoming media streams, but we have a larger scale issue of 
operating on received content in a timely manner to provide desired results 
to the user. In this case, systems can be designed to produce partial results 
to provide rapid user feedback while more time consuming operations can 
be deferred, perhaps to off-peak hours. 

 

5.6 Systems Issues and Architectures 

The media processing systems programmer can benefit from using one of 
the several frameworks that have been developed primarily for rendering 
and transcoding media of various formats on different platforms.  Good 
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modular systems design has led to implementation of dataflow architec-
tures employing sources, sinks, and filters. These frameworks include the 
open source project gstreamer [Kata06], [Taym07], Microsoft’s Direct 
Show [Pesce03], and Apple’s QuickTime [Hoff92]. Third party vendors 
may supply their own filters for decoding a particular media format, pars-
ing a container format, or demultiplexing audio and video streams. Com-
mon rendering and transcoding operations such as cropping and scaling are 
implemented as pass-though filters that operate on a particular media type. 
The architecture does not impose restrictions on filters (such as forbidding 
file I/O for parameter specification or results storage), and the filters may 
utilize hardware acceleration when available. Media processing including 
elemental feature extraction all the way up through higher-level functional-
ity such as face detection or shot boundary detection can be implemented 
as filters. This framework relieves the burden on the programmer of sup-
porting the myriad of media formats. These systems can operate in real-
time where a clock is derived from a capture or rendering filter or in a free-
running mode for faster than real-time operation. Systems include the no-
tion of input/output pins or pads where their datatype must match in order 
for a connection to be made (e.g. uncompressed RGB pixel values) and 
may include some ability to automatically invoke and connect suitable 
transform filters if the pins are of different types. A typical example of this 
is a decoder that outputs Y,Cr,Cb and a rendering device that only supports 
RGB: a color space conversion filter may be added automatically to make 
the necessary transformation. 

 

5.7 Conclusion 

We provided a general introduction to media processing for video retrieval 
applications. We looked at common aspects for audio, video, and text me-
dia processing algorithms including computing features to represent the 
media and facilitate later processing, segmentation into logically meaning-
ful units at different temporal levels, and touched on distance metrics, clus-
tering and browsing. These topics will be explored further in the chapters 
that follow, which are organized with respect to media type. 
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6 Video Processing 

6.1 Introduction 

Along with the expeditious improvements in the network, computation, 
storage technologies and consumer electronics, video content has become 
much more commonplace, and more accessible. Powered by the broadband 
wireless connection capabilities provided by Wi-Fi, 3G, WiMax, etc., and 
the video playback capabilities available on various personal digital assis-
tants (PDA), the vision of searching and browsing video content anywhere 
and anytime is becoming a reality.  

Video content indexing and retrieval has been an active research area for 
the last two decades [Dimitrova02]. Although it is still far from mature, 
many practical multimedia query systems have been successfully built. 
Representative image and video search systems include QBIC [Flickner95] 
and CueVideo [Ponceleon98] developed by IBM, CuVid [Chang07] built 
by Columbia University, VideoLogger [Virage07] provided by Virage, and 
the Miracle system [Gibbon06] developed by AT&T Labs. The rapid ad-
vance in video content analysis and delivering technologies allows the ser-
vice providers to offer more personalized and interactive video services to 
the end users, for example, IPTV services [Xiao07].   

Recently, Web search and online advertising service companies, includ-
ing Yahoo, Google, and MSN have begun to provide online search ser-
vices for multimedia content, including audio, image, and video. The most 
successful video sharing website is YouTube [YouTube07], which at-
tracted millions of users around the world. Flickr [Flickr07] is one of the 
most popular websites for sharing and managing photos. Although most of 
these search engines are purely relying on metadata attached to the content 
or annotation created by the users, they have been proven to be very use-
ful. 

The challenge of locating relevant content in a sea of multimedia docu-
ments demands a standard solution to identifying and managing content. 
MPEG-7 offers a comprehensive set of audiovisual description tools to 
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create descriptions, which will form the basis for applications enabling the 
needed effective and efficient access to multimedia content [Martinez02a, 
Martinez02b]. Content described by MPEG-7 will be inherently more 
valuable because it will be more easily searchable and accessible. 

TRECVID [Kraaij06], sponsored by NIST, further stimulates the inter-
est and effort in automatic segmentation, indexing, and content-based re-
trieval of digital video in a broad research community. New systems and 
algorithms have been constantly reported from all TRECVID participants 
over the years, e.g. IBM, Tsinghua University, Columbia University, 
CMU, KDDI, etc. So far, TRECVID has organized many evaluation tasks, 
including shot boundary detection, high-level and low-level feature extrac-
tion, story segmentation, search, rushes summarization, content-based 
copy detection, surveillance event detection, etc. These tasks cover a wide 
spectrum in the video analysis and retrieval area.   

The structure of this chapter is as follows. Section 6.2 focuses on shot 
boundary detection, which is normally the first component in most video 
processing systems. We discuss how to select representative keyframes for 
each shot in Sect. 6.3. Face detection and recognition are described in 
Sects. 6.4 and 6.5. We briefly introduce the video OCR techniques in Sect. 
6.6. Concept detection in video is then presented in Sect. 6.7. In Sect. 6.8, 
user interface issues, including video browsing and navigation are consid-
ered. Finally, we draw conclusions in Sect. 6.9. 

6.2 Shot Boundary Determination 

Shot boundary determination (SBD) has been widely studied for the last 
decade. Some of the early work can be found in [Shahraray95, Wang00, 
Yeo95, Zhang93]. Researchers at AT&T started to tackle multimedia con-
tent processing and indexing in the early 1990s, and Shahraray reported a 
scene change detection algorithm in 1995 [Shahraray95]. With the limited 
computation power (90M CPU) and system memory (8 MB) available at 
that time, as well as the constraints of real time and low latency, the origi-
nal algorithm was designed to be effective and highly efficient. The 
adopted visual features were intensity histograms and image matching with 
one-dimensional motion compensation by projection. A single finite state 
machine (FSM) was designed to detect all types of scene changes and re-
port camera motions, including panning and tilting. An improved version 
of this algorithm is adopted in the MIRACLE system, a video search en-
gine, at AT&T [Gibbon06]. 
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In this section, we describe the AT&T SBD system [Liu06] evaluated in 
TRECVID 2006. Thanks to current computational power, there is a lot of 
room to extend the existing algorithm. Three major improvements are: (1) 
two-dimensional motion compensation; (2) utilizing color information in 
addition to intensity values; (3) instead of using a single FSM, multiple 
FSM-based detectors are adopted to track different types of shot bounda-
ries, e.g. cut, fade in/out, dissolve, wipe, etc. The new architecture is more 
flexible and modularized: each detector is independently designed and ad-
justed, and additional detectors can be easily plugged in to capture any 
new types of shot boundaries.  

There are three main components in the AT&T SBD system: visual fea-
ture extraction, shot boundary detectors, and result fusion. Figure 6.1 
shows the high level diagram of the SBD system. The top level of the algo-
rithm runs in a loop, and every loop processes one video frame. Each new 
frame and the associated visual features are saved in circular buffers. The 
loop continues until all frames in the source video, e.g. an MPEG file, are 
processed. 

 

 

Fig. 6.1. Overview of AT&T shot boundary determination system. 

Given the wide varieties of shot transitions, it is difficult to handle all of 
them using a single detector. The system adopts a “divide and conquer” 
strategy. Six independent detectors were devised, targeting for six domi-
nant types of shot boundaries in the SBD task. They are cut, fade in, fade 
out, fast dissolve (less than five frames), dissolve, and wipe. Essentially, 
each detector is a finite state machine, which may have a different number 
of states. Finally, the results of all detectors are fused and the overall SBD 
result is generated in the necessary format. 
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6.2.1 Feature Extraction 

For each frame, the system extracts a set of visual features, which can be 
classified into two types: intra-frame and inter-frame visual features. The 
intra-frame features are extracted from a single, specific frame, and they 
include color histogram, edge, and related statistical features. The inter-
frame features rely on the current frame and one previous frame, and they 
capture the motion compensated intensity matching errors and histogram 
changes.  

Figure 6.2 illustrates how these visual features are computed. While any 
resolution source material is supported, the resolution of the TRECVID 
evaluation sequences is 352×240 pixels. The visual features are extracted 
from a central portion of the picture, which are called the region of interest 
(ROI). The ROI is marked by a dashed rectangle in Fig. 6.2, overlaid on 
the original image. The choice of the ROI size is based on two considera-
tions: (1) The ROI covers the majority of the image and effectively elimi-
nates the letterbox for wide screen content. (2) The ROI avoids the border 
effect in the following feature extraction steps. 

 

Fig. 6.2. Visual feature extraction for SBD. 

Within the ROI, the system extracts the histogram of red, green, blue, 
and intensity channels and computes a set of common statistics, including 
the mean, the variance, the skewness (the third order moment), and the 
flatness (the fourth order moment). A visual feature called histogram dy-
namic range is also extracted, which roughly measures how wide the his-
togram spreads. To compute the intensity dynamic range, the histogram 
was searched from both ends, until the accumulated mass of both sides is 
more than 2%. The dynamic range is the difference of these two values. 

For each pixel in the ROI, its discontinuities in the horizontal (with re-
spect to vertical) direction are computed by Sobel operators [Gonzalez93]. 
If the value is higher than a preset threshold, the pixel is labeled as a hori-
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zontal (respectively, vertical) edge pixel. Finally, the ratio of the total 
number of horizontal (respectively, vertical) edge pixels to the size of ROI 
is used as an edge based feature.  

The temporal derivative (delta) of a feature (e.g. histogram mean) is fit-
ted by a second-order polynomial to make it smooth. The delta values of 
histogram mean, variance, and dynamic range are computed as additional 
visual features.  

Motion features are extracted based on smaller blocks within the ROI. 
Specifically, in Fig. 6.2, the ROI (288×192 pixels) is split into 24 blocks (6 
by 4), each with the size 48×48 pixels. Generally, motion information ex-
tracted from bigger block sizes (e.g. 48×48) is more reliable than those 
from smaller sizes (e.g. 8×8). The search range of motion vector for each 
block is set to 32×32. It could be either an exhaustive search for better ac-
curacy or a hierarchical search for higher efficiency. The motion features 
for each block, e.g. block k, include the motion vector (MVk), the best 
matching error (MEk), and the matching ratio (MRk). The matching ratio is 
the ratio of the best matching error with the average matching error within 
the searching range, and it measures how good the matching is. The value 
is low when the best matching error is small and the block has significant 
texture. Based on the motion features of all blocks, the dominant motion 
vector and its percentage (the ratio of the number of blocks with this mo-
tion vector to the total number of blocks) are used as frame level features. 
The system then ranks all MEk (resp. MRk), and computes the order statis-
tics, including the mean, MEA; the median, MEM; the average of the top 
1/3, MEH; and the average of the bottom 1/3, MEL (resp. MRA, MRM, MRH, 
MRL). These features are effective in differentiating the localized visual 
changes (e.g. foreground changes only) from the frame-wise visual 
changes. For example, high MRH with low MRA indicates a localized tran-
sition. 

In total, 88 visual features are extracted for each frame. Interested read-
ers can find more details in [Liu06]. 

6.2.2 Shot Boundary Detectors 

Figure 6.3 illustrates the general FSM structure for all shot boundary de-
tectors. State 0 is the initial state. When the transition start event is de-
tected, the detector enters the sub FSM, which detects the target transition 
pattern, and locates the boundaries of the candidate transition. If the sub 
FSM fails to detect any candidate transition, it returns to state 0, otherwise, 
it enters state N. State N further verifies the candidate transition with more 
strict criteria, and if the verification succeeds, it transfers to state 1, which 



112      Video Processing 

indicates that a transition is successfully detected, otherwise, it returns to 
the initial state. Although the six detectors share the same general FSM 
structure, their intrinsic logic and complexity is quite different. In the rest 
of this section, we briefly discuss all the individual detectors. For more de-
tails, please refer to [Liu06]. 

Fig. 6.3. General FSM for transition detectors. 

Cut Detector 

The cut detector uses a state variable, AverageME, to track the average 
value of matching errors. Its initial value is set to 5.0, and it is updated 
whenever the state is 0 with the following infinite impulse response (IIR) 
filter, 

15.085.0 AMEAverageMEAverageME , (6.1)

If the current mean matching error, MEA, is larger than 5 times Aver-
ageME, the sub-FSM is activated. The main roles of the sub-FSM are to 
check whether the candidate boundary has the local maximum matching 
error, and to introduce a three-frame delay for verification. A verification 
function, Verify(), compares all pairs of frames in the neighborhood 
(within three frames) of the boundary, such that false cuts introduced by 
camera flashes can be effectively removed.  

The system also contains a cut verification engine based on a support 
vector machines (SVM) [Vapnik98]. Assuming k is the end frame of a 
candidate cut, we extract four groups of features. The first group is the 
original visual features (88 dimensions) of frame k. The second group is 
the mean and the standard deviation of all features within an 11-frame 
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window centered at k. The third and the last group of features are the same 
statistics on a 21-frame window and a 31-frame window. All these features 
are concatenated into a 616-dimensional feature vector as SVM input. 

Fade in Detector 

Fade in can be reliably detected using the intensity histogram variance. 
Low variance (not necessarily low intensity) is a strong indicator for the 
beginning of fade in.  Fade in transitions often start from a group of low 
variance frames and then the variance gradually increases until it becomes 
stabilized. 

The verification algorithm pinpoints the starting and the ending frames 
of the candidate transition based on the variance value, and it then meas-
ures the linearity of the standard deviation (STD) of the intensity. The de-
tector uses r2 as a measure of linearity in linear regression. Assume there 
are a set of pairs: {xi, yi}, 1  i  N. By minimum square error, it is 
straightforward to compute the optimal a and b, which minimize the error 
Ereg: 

N

i
iireg baxyE

1

2

 
(6.2)

 
and r2 is defined by 

r2 1
Ereg

Etot ,  where  
Etot yi y

2

i 1

N

 
(6.3)

 
If the linearity of the STD curve is higher than a preset threshold, the Ver-
ify() function returns true, otherwise, it returns false. 

Fade out Detector 

Similar to the fade in detector, the fade out detector is also triggered by 
low variance frames. The verification algorithm checks the linearity of the 
standard deviation of the intensity. Very often, fade out and fade in transi-
tions are adjacent, and the overlapped fade out and fade in transitions are 
merged into a single fade out/in (FOI) transition in the result fusion step. 

Fast Dissolve Detector 

Fast dissolve is triggered by a medium change of the matching error, 
where MEA is bigger than 2×AverageME. Let X, Y, and Z denote the start-
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ing frame, the ending frame, and a middle frame within a fast dissolve 
transition. It is required that the duration of the fast dissolve transition be 
less than five frames, so it is reasonable to assume that there is no motion 
involved in the transition. With this assumption, Z can be written as a lin-
ear combination of X and Y, Z = X + (1 - )Y, where 0    1. The value 
of  can be determined by a minimum square error criterion. If the fitting 
error is smaller than a preset threshold and 0.2    0.8 for all middle 
frames of the transition, then the Verify() function returns true. 

Dissolve Detector 

A dissolve is a procedure of linearly mixing two different scenes X and Y. 
Assuming Zi is an intermediate frame, then we can use the following for-
mula to represent Zi, 

YXZ iii )1(  (6.4)

where { i} are a set of monotonically increasing values that are in the 
range [0, 1]. Let the variances of X, Y, and Zi be 2

X, 2
Y, and 2

Zi. If we 
also assume X and Y are independent, then we have 

22222 1 YiXiZi  (6.5)

If 2
X = 2

Y, the curve for 2
Zi is a symmetric quadratic function, shown 

as in Fig. 6.4(a). But in typical cases, the curve is more like that shown in 
Fig. 6.4(b), where 2

X is not equal to 2
Y, and X and Y are not independent. 

When the variance of either X or Y is small, the variance curve may only 
contain either the decreasing or the increasing pattern, such as illustrated in 
Fig. 6.4(c). 

 

Fig. 6.4. The variance curves of some typical dissolve transitions. 

The sub-FSM of the dissolve detector is designed to capture the charac-
teristic curves shown in Fig. 6.4. A state variable, AverageVariance, is 
used for pinpointing the starting and ending frame of the dissolve transi-
tion. Its initial value is set to 3.5 and it is updated by the following IIR fil-
ter in state 0, 
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15.085.0 IHVianceAverageVarianceAverageVar  (6.6)

where HVI is the intensity histogram variance.  
Verification is a key component of this FSM. The main challenge is that 

the variance curve may not be smooth due to motion or camera flashes in 
the original sequences X and/or Y. For verification purposes, a set of heu-
ristic features are extracted based on the entire transition. In this section, 
we only introduce a few of them. For more details, please refer to [Liu06].  

From the variance curve, shown in Fig. 6.5, the starting and ending 
frames need to be located. To do that, the system starts from the minimum 
variance frame in the candidate transition, and then searches forward and 
backward for the maximum absolute delta variance frames, which are fmin 
and fmax in the figure. Then from fmin, the system further searches backward 
until the delta variance of the current frame is less than half of the delta 
variance of the next frame or 2×AverageVariance. This frame is set as the 
starting frame of the candidate dissolve. Similarly, the system searches 
from fmin forward, and locates the ending frame.  

 
Fig. 6.5. The curves of variance and delta variance. 

Then a set of heuristic features is extracted for verification purposes. For 
example, the height of the variance curve, , is the difference of the 
maximum and minimum variances within the transition. Knowing that the 
delta variance is roughly a linear curve between fmin and fmax, a linear fitting 
is done for the delta variance. The system also computes the estimation er-
ror for each image in the transition from its neighboring images, and the 
matching error between the starting and ending frames of the transition.  

The baseline dissolve verification employs a sequence of threshold-
based criteria relying on these features. A more robust approach is to apply 
SVM on these features. 
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Wipe Detector 

Wipe is the most ill defined transition. There are more than 20 different 
types of wipe that are commonly used in video editing and there is no sin-
gle rule that applies to all of them. In this system, only one common type 
of wipe is considered, where the first scene gradually changes to the sec-
ond scene, and for a given intermediate frame, part of the frame comes 
from the first scene, and part of it comes from the second scene.  

A wipe is triggered by a smooth change, when the matching error MEA 
is bigger than 1.5×AverageME and less than 4×AverageME. In Fig. 6.6, 
the starting and the ending frames of the candidate wipe transition are de-
noted as X and Y, and an intermediate frame as Zi, i = 1, ..., L 1, where L 
is the duration of the transition. The system partitions frame Zi into 8×8 
blocks, and finds the best match with motion compensation from both X 
and Y for each block. When the matching error is too high, the block does 
not come from either X or Y. Then the portion of blocks with a match from 
X, denoted as xi, and the portion of blocks with a match from Y, denoted as 
yi are computed. Finally, the system measures the linearity of xi and yi 
curves to verify the wipe transition.  

 

Fig. 6.6. Illustration of wipe verification. 

SVM Models 

Support vector machines are now a standard for fast and robust classifica-
tion. While this classifier greatly reduces training time by analyzing only 
marginal samples, care must be given to the training parameters and under-
lying kernel selection. In [Liu06], the authors evaluated both linear and ra-
dial basis functions in a three-fold validation process. Seven linear settings 
and 70 radial basis function (RBF) settings were searched with random 
subsets of the training set split into 80/20 percent training/testing parti-
tions. All features are globally normalized with a sigmoid before feeding 
the SVM. 
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6.2.3 Fusion of Detector Results 

Fusion of detector results occurs when all frames are processed.  The list of 
raw results is sorted by their starting frames and then all overlapped transi-
tions are merged with different priorities assigned to each transition type. 
The adopted priority order is (from highest to lowest) FOI, dissolve, fast 
dissolve, cut, and wipe. The final step is to map the system types into two 
categories: cut and gradual. All shot boundaries except cuts are mapped 
into gradual. 

6.2.4 Evaluation Results 

In the TRECVID SBD evaluation, each group can submit up to 10 runs. 
Figure 6.7 shows the overall performance of all participants, with AT&T’s 
runs plotted with squares. In terms of F-measure, the AT&T SBD system 
achieved the best overall performance. Table 6.1 shows the four best sub-
missions for AT&T’s SBD system in TRECVID2006.  

Table 6.1 The best runs of AT&T’s submissions. 

 
Performance (%)  

Category Recall Precision F-
Measure 

Report 
localized 
changes 

SVM Veri-
fication 
Kernel 

Overall 85.5 89.2 87.3 
Cut 88.9 90.4 89.6 
Gradual 76.5 85.6 80.8 
Frame 87.1 91.9 89.4 

No 

 
Linear 
SVM 

Overall 85.1 87.6 86.3 
Cut 89.4 90.4 89.9 
Gradual 73.6 79.5 76.4 
Frame 86.9 93.0 89.8 

No 

 
None 

Overall 83.8 90.5 87.0 
Cut 86.2 92.2 89.1 
Gradual 77.5 85.8 81.4 
Frame 87.4 92.3 89.8 

Yes 

 
RBF 2 

Overall 82.6 90.9 86.6 
Cut 86.1 92.3 89.1 
Gradual 73.1 86.9 79.4 
Frame 88.9 92.1 90.5 

Yes 

 
RBF 1 
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Among these results, there are different settings in terms of local 
changes and the inclusion of an SVM verification stage. The SVM based 
dissolve verification boosts the overall performance by 2.5% and gradual 
transition performance by 3.4%, a significant improvement when the initial 
performance is already high. The frame based gradual transition perform-
ance of all AT&T’s 10 runs leads the other systems by more than 3.5%, 
meaning the proposed gradual transition (mainly the dissolves) boundary 
location approaches are very accurate. On an Intel 3.7GHz Xeon machine, 
all of the proposed system runs faster than 0.4× real time (the execution 
speed ranked the seventh among 26 participating groups). 

 

Fig. 6.7. SBD overall performance in TRECVID 2006. 

6.3 Representative Image Selection 

Each video shot can be represented by a set of representative images. 
There are a few ways to select the representative images. The simplest one 
is to choose the first, the last, or the middle frame of the shot to be the rep-
resentative image. But this choice may not be optimal. Although the crite-
ria of selecting optimal representative images are application dependent 
and subjective in most cases, there are some common standards. For ex-
ample, in a video shot of weather forecast, images with front view faces 
and stable background are better than those with side view faces and fast 
motion background. Fig. 6.8 shows examples for these two cases. Obvi-
ously, the image shown in Fig. 6.8(a) is a better choice as a representative 



6.3 Representative Image Selection      119 

image for the shot. In this section, we briefly introduce a few methods of 
selecting representative image(s) within a shot. 
 

 
 (a) Representative image   (b) Non-representative image 

Fig. 6.8. Two images within one weather forecast shot. 

Two main factors that affect the determination of representative images 
are camera motions and local object motions. For stable shot with no cam-
era motion and little object motion, the challenge of representative image 
selection is to choose one image with the best quality in terms of content. 
As mentioned before, when faces appear in the shot, it is preferred to 
choose images with frontal view faces, faces with opened eyes and closed 
mouth. If onscreen text appears in the shot, we want to choose one image 
with the most text and the top clarity. 

Even when the camera is still, the scene may be complex and dynamic, 
moving foreground objects may obstruct the background or the major ob-
jects that the camera is focusing on, or the main objects may actually move 
in and out of view. Part of the shot may be out of focus because of the in-
trusion of new objects. The challenge in this scenario is to detect such ob-
structions by local motion detection or out of focus detection. Lim et al. 
proposed an algorithm that automatically determines if the captured photo-
graph is out of focus through image analysis. It uses several global figures 
of merit which are computed from local image statistics [Lim05].   

For videos with significant camera motions, including panning, tilting, 
zooming in, and zooming out, the scene within a shot may change com-
pletely. Multiple images are necessary to represent the shot. Detecting the 
types of camera motions and their exact occurrence frames is important to 
segment the shot into sub-shots where each sub-shot is significantly differ-
ent from the previous sub-shot. Then, a representative image is assigned to 
each sub-shot. For example, an action of zooming in may separate the shot 
into two sub-shots, one containing the frames before the zooming in, and 
the other containing the frames after the zooming in action. For camera 
motion detection in compressed video, please refer to [Tan00].  
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In the following, we introduce a method to detect zooming in /out ac-
tions in a video proposed by Liu et al. [Liu07]. As shown in Fig. 6.9, 
frames i and i 1 are two adjacent frames. For each frame, the intensity 
values for the center row (horizontal bars hi and hi 1) and those for the cen-
ter column (vertical bars vi and vi 1) are extracted. Dynamic programming 
is used to search the optimal match between the two horizontal bars, where 
the centers of the two bars are aligned.  Fig. 6.9 shows an example of 
zooming out, and the best match path (MPh) is marked in a solid line. The 
dotted solid line shows a possible match path for a case of zooming in. The 
tangent value of the angle of the match path ( ) is defined as the zooming 
factor. While zooming out, the factor is less than 1.0, and while zooming 
in, the factor is greater than 1.0. 

Using the single pixel wide horizontal (vertical) bars, possible horizon-

timal horizontal and vertical matching paths, the entire frames are used to 
verify the zooming decision. For the case of zooming out, frame i-1 is 
shrunk and compared to corresponding portion in frame i. The verification 
for the case of zooming in is similar. If the overall matching error is small 
enough, the zooming flag of current frame is set to be true, otherwise, 
false. 

Fig. 6.9. Zooming detection. 

 Intelligently selecting the representative images benefits the video data 
management system, as a whole, and provides the end users with a more 
enjoyable and more informative video browsing and navigation experi-
ence. 

tal (vertical) zooming factors can be computed efficiently. Based on the op-
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6.4 Face Detection 

Face detection in still images has a wide range of applications, including 
image retrieval, multimodal human computer interfaces, multimedia con-
tent analysis, digital cameras, face recognition, face tracking, video sur-
veillance, emotion detection, etc. In the last two decades, much research 
effort has been focused on this area, and a few successful face detection 
techniques have been developed and adopted in real world applications and 
devices. For example, modern digital cameras feature face detection auto-
focus capabilities and recent Web cameras can enhance the video quality 
by adjusting the luminance around the faces. Recent progress in face detec-
tion algorithms can be found in two great review papers [Hjelmas01, 
Yang02]. In this section, we will give an overview of existing methods, 
and describe a couple of widely used approaches in detail.   

Face detection is a challenging task, mainly due to the variant lighting 
conditions, occlusions, face orientation and poses, and existence of other 
facial features, for example, glasses, beards, etc. There is not a single ap-
proach that works well for all scenarios. Yang et al. surveyed about 150 
different face detection methods, and categorized them into four general 
methods: (1) knowledge-based methods; (2) feature-based methods; (3) 
template matching-based methods; and (4) appearance-based methods.  

Knowledge-based methods depend on some basic knowledge of human 
faces. For example, a frontal face is normally symmetric, with two eyes, 
one nose, and one mouth. If we project a frontal face vertically, the hori-
zontal profile is normally symmetric, with a maximum value in the center, 
and decreasing values on both sides. If we project a frontal face horizon-
tally, the vertical profile normally shows the low intensity valleys around 
the areas of eyes and mouths. Figure 6.10 shows the horizontal and vertical 
profiles of a typical face. 
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Fig. 6.10. Horizontal and vertical profiles of a typical face image. 

Feature-based methods try to detect invariant features that are not sig-
nificantly affected by lighting conditions, viewpoint, or pose. Examples of 
these features include facial features, texture, skin tone color, and multiple 
features. As an example, we show how to locate faces based on skin tone 
color. To effectively model skin color, we use the Hue Saturation Value 
(HSV) color system. Compared with standard Red Green Blue (RGB) 
color coordinates, HSV produces a more concentrated distribution for skin 
color. Most humans, despite the race and age, have similar skin hue, even 
though they may have different saturation and values. As value more de-
pends on image acquisition setting, normally only hue and saturation are 
used to model human skin color. Fig. 6.11 gives the distribution of 2000 
training data points, in hue-saturation space, that are extracted from differ-
ent face samples. Clearly, it is appropriate to use a Gaussian with full co-
variance matrix to model this distribution. The hue of skin-color centroid is 
about 0.07, indicating that skin color is somewhat between red and yellow.  
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Fig. 6.11. Chroma chart of skin tone. 

Figure 6.12 shows the skin tone color detection in a real image. The 
original image with complex background is shown in Fig. 6.12(a). Fig. 
6.12(b) illustrates the skin tone color likelihood value (normalized to gray-
scale for demonstration purposes). A preset threshold is used to classify 
pixels into face tone or non face tone categories. Then a morphological op-
eration is applied to remove noise. The detected skin tone region is shown 
in Fig. 6.12(c). The white dot on the left corresponds to hand regions in the 
background, the white area on the right corresponds to face. A further step 
is required to verify detected skin region is face. 

(a) Original image (b) Skin tone value (c) Skin tone region 
Fig. 6.12. Face detection using skin tone. 

Template matching methods compute the correlation of an input image 
with an average face template learned from a set of human faces (usually 
frontal faces). The correlation value can be computed at the global level, 
where the whole face is considered, or at the local level, where the match-
ing of eyes, nose, and mouth are done separately. One challenge of tem-
plate matching methods is that the face deformation needs to be tolerated. 
Liu and Wang proposed a fast template matching procedure using iterative 
dynamic programming (DP) for face detection and tracking in [Liu00]. In 



124      Video Processing 

Fig. 6.13, F is the face template image of size M×N, T is the test image of 
size I×J, and each small block represents a pixel. The task is to find a re-
gion in the test image T that is best matched with the template by some 
warping functions that map the columns/rows in the region to those of the 
template. Both global and local constraints for the warping functions are 
utilized to limit the search space. The global constraint is that the height 
and width of the face in test image are no less than those of the face tem-
plate, and no bigger than twice of the face template. For a given top-left 
pixel position, s, of a candidate region, the regions for which we need to 
examine are all rectangles that end at any pixel within the shaded area. The 
largest candidate region is illustrated by a bold rectangle in the figure. The 
local constraint is that one or two rows/columns in candidate region are 
mapped to each row/column of the face template. An iterative 1-D dy-
namic programming procedure for row- and column-wise template match-
ing is applied, and it converges to a local optimal 2-D matching. 

  

Fig. 6.13. Illustration of template matching. 

Appearance-based methods rely on statistical analysis and machine 
learning techniques to capture the characteristics of face and non-face im-
ages. Except for selecting the specific models (neural network, eigenface, 
etc.), this is a purely data-driven approach. A large sized labeled dataset of 
face and non-face samples is required. In the following, we describe two 
successful face detection algorithms in this category. 

Rowley et al. proposed a neural network based face detection algorithm 
in [Rowley98], where a 20×20 region is fed into a neural network after 
light correction and histogram equalization. The structure of the neural 
network is elaborately designed with three types of hidden neurons aiming 
to detect different facial features. This algorithm has been successfully 
employed in the Name it [Satoh99] project.  
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Viola and Jones provided an AdaBoost based face detection algorithm 
in [Viola01]. There are three main novelties in this algorithm. First, the au-
thors introduced a new image representation called the “integral image,” 
which allows very fast feature computation at many scales. The total num-
ber of these features is very large, much more than the number of pixels in 
the image. How to select a small set of effective features is actually the 
second novelty of this paper.  Following the framework of AdaBoost, a 
weak learner is constructed based on only a single feature. While the 
boosting process selects a new weak classifier at each stage, effectively 
one new feature is selected. The third novelty is that the authors employed 
a method for combining successively more complex classifiers in a cas-
cade structure which dramatically increases the speed of the face detector 
by focusing attention on promising regions of the image. The algorithm is 
very efficient, being able to detect faces in real time. The framework is 
flexible, and it can be used to detect other objects, for example, pedestri-
ans. This algorithm has been implemented in the open source computer vi-
sion library (OpenCV) [OpenCV07]. 

It is more effective to combine these approaches to cope with the huge 
variation in visual appearance of faces. Schneiderman and Kanade 
[Schneider00] proposed a statistical method for face and car detection. 
They used a view-based approach with multiple detectors that are trained 
for specific orientations of an object. Each view-based detector models the 
faces using a product of histograms, each representing the joint statistics of 
a subset of wavelet coefficients and their position on the face. AdaBoost 
algorithm is used to minimize the classification error. Simulation results 
show that high accuracy is achieved for both frontal and profile face detec-
tions, although the speed is a bit slow – taking 1 minute to detect faces for 
a 320×240 image.  

Face tracking is basically detecting faces in a sequence of images. Nor-

locations with different scales, which is time consuming. In face tracking 
tasks, the face detection results of neighboring frames can be used for ei-
ther speeding up the face detection in the current frame or improving the 
face detection accuracy. For example, if it is known that there is one face 
in the video and we detect a face in one frame, for the next frame, we only 
need to detect faces around the area that faces showed up before. The faces 
detected in one frame can be used to update the face model on the fly. An-
other advantage of face tracking in video is that motion information is a 
useful cue to locate possible face regions, which will significantly reduce 
the face detection complexity. 

mally, the face detection in a still image involves searching faces in different 
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6.5 Face Recognition 

The goal of face recognition is to recognize people by their facial features. 
Motivated by its wide area of applications, which include entertainment, 
human computer interfaces, law enforcement, biometric identification, and 
surveillance, etc., face recognition has attracted huge research attention 
and effort in the last few decades. Some of the advanced face recognition 
technologies, for example, eigenface based algorithms have been success-
fully applied in commercial products. Face recognition provides useful 
cues for video content analysis. In this section, we will discuss the ap-
proaches and challenges in the face recognition area. Interested readers can 
find more details on this topic in two excellent survey papers [Chel-
lappa95, Zhao03]. 

 Normally, a face detection system is composed of three main compo-
nents: face detection, facial feature extraction, and face recognition. The 
last section focuses on face detection; this section will mainly describe the 
last two components. Face detection is a challenging problem because we 
must recognize the same person with different appearances, for example, 
different expressions and different hair styles.  

There have been many face recognition algorithms proposed over the 
last 30 years. Zhao et al. classified them into three classes: (1) holistic 
matching methods, (2) feature-based (structural) matching methods, and 
(3) hybrid methods. Holistic matching methods treat the entire face region 
as input to the recognition system. Representative approaches within this 
category include the eigenface method and Support Vector Machine 
(SVM) based methods, etc. 

Feature-based methods use local facial features such as eyes, nose and 
mouth and their locations and local statistics as input to the face recogni-
tion engine. This category includes pure geometric methods, dynamic link 
architectures, hidden Markov models, convolution neural networks, etc. 
We use convolution neural network as an example here.  

Hybrid methods combine both local and global information about the 
face to recognize faces. Typical approaches are modular eigenfaces, hybrid 
local feature methods, component based methods, etc.   

The method known as Eigenface was motivated by principal component 
analysis, which is a technique used to reduce multidimensional data to 
lower dimension for analysis or storage. It is also named the Karhunen-
Loeve transform. This method requires a set of training images which are 
multiple images of each candidate that have been centered on the face and 
close cropped. Let the resolution of face image be N×N, then the training 
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set of faces is represented by a set of face image vectors { 1, 2, ..., M}, 
where each face vector i is of length N2. The average face vector is 

M

i
iM 1

1
 

(6.7)

The difference between face i and  is i = i  . Applying principal 
component analysis, we can find a set of M eigenvectors uk and their asso-
ciated eignevalues k. They are the eigenvectors and eigenvalues of the co-
variance matrix: 
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Matrix C is N2×N2, and determining the N2 eigenvectors and eigenvalues 
is not manageable for even small image size. When the number of training 
face images, M is much smaller than N2, there is a more efficient way to do 
so. Considering the eigenvectors vi of ATA, such that, 

iii
T vAvA  (6.9)

where i is the associated eigenvalue. It is obvious that Avi are the eigen-
vectors of C=AAT. Specifically, eigenvector ui can be written as, 

M

k
kiki

1
vu  

(6.10)

. 
The eigenvectors ui are also called the eigenfaces. In practice, there is no 

need to use all M eigenfaces. [Turk91] found that M'=40 is sufficient to 
describe the set of face images. For a test face image , its eigenface com-
ponents are computed by 

'.,...,1),( MkT
kk u  (6.11)

The weight vector ={ 1, 2, ..., M'} represents the contribution of 
each eigenface in describing the test face image. The simple method to de-
termine the identification of the test face image is to find the face class k 
that minimizes the Euclidian distance  

22
kk  (6.12)

where k is the weight vector of the k-th face class.  
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Another approach for face recognition is by utilizing an artificial neural 
network. Typical images normally have thousands of variables (pixels), 
and a fully-connected feed-forward network needs hundreds of thousands 
of weights. When the training data is scare, overfitting problems may be 
occur. LeCun and Bengio proposed the so called convolutional networks 
for a wide range of applications including images, speech, and time series. 
Convolutional networks take advantage of three architectural ideas to en-
sure shift and distortion invariance as well as generalization ability. They 
are (1) local receptive fields, (2) shared weights, and (3) spatial or tempo-
ral subsampling. Fig. 6.14 shows a typical convoloutional neural network. 
Each unit of a layer connects to a set of units located in a small neighbor-
hood in the previous layer. With local receptive fields, elementary visual 
features including edges can be extracted by neurons. To extract the same 
visual feature, neurons at different locations can share the same connection 
structure with the same weights. The output of such a set of neurons is a 
feature map. This operation is the same as a convolution of the input image 
with a small size kernel. Multiple feature maps can be applied to extract 
multiple visual features across the image. Subsampling is used to reduce 
the resolution of the feature map, and hence reduce the sensitivity of the 
output to shifts and distortions.  

 

 
 

Fig. 6.14. A typical convolutional neural network for face recognition. 

Lawrence et al. [Lawrence97] applied the convolutional neural network 
[LeCun98] approach to face recognition. The authors conducted experi-
ments on the ORL database which was created by the Olivetti Research 
Laboratory in Cambridge, UK. There are 40 distinct subjects in this data-
base, and each one has 10 different images. The experiment used 5 images 
for training and 5 for testing for each subject. The authors adopted a simi-
lar architecture of a convolutional neural network as shown in Fig. 6.14. 
The dimensions of the input images and all feature maps in the middle lay-
ers are different. Since there are 40 subjects to recognize, the output layer 
has 40 neurons. The best achieved error rate is 3.8% in this case.  
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Blanz [Blanz06] tackles the face detection problem using a 3D 
morphable model, which extracts complete shape and texture estimates as 
invariant facial features. Morphable model can be used as a preprocessing 
tool for generating frontal views from non-frontal images as the inputs to 
the frontal face recognition systems. Another advantage of this method is 
that 3D face reconstruction can help to build a large variety of different 
views of faces, which are used as a training set for learning 2D features 
that are invariant to pose and illumination. 

Wiskott et al. [Wiskott99] presented a face recognition system where the 
database contains one image for each person. The system utilizes image 
graphs to collapse the variance introduced by position, size, expression, 
and pose. Faces are represented by labeled graphs, where edges are labeled 
with distance information and nodes are labeled with Gabor wavelet coef-
ficients, called jets. The nodes correspond to the fiducial points (e.g. eyes, 
mouth, contour, etc.). After extracting the model graphs for both gallery 
images and probe images, face recognition is carried out by comparing the 
probe image graphs and all gallery image graphs.  

6.6 Video Optical Character Recognition 

Optical character recognition (OCR) is a technique to translate images of 
handwritten or printed text into symbols. As a field of research, OCR bene-
fited from the progress in pattern recognition, artificial intelligence, and 
computer vision. Over the last half contrary, OCR techniques have been 
constantly improved, and many commercial products have been success-
fully built. The challenges of recognizing typewritten text are mainly im-
age defects, similar symbols, punctuation, and various fonts. Nowadays, 
the accuracy of recognizing typewritten Latin text exceeds 99%, and it is 
considered as a solved problem. For handwritten input, it is still an active 
research area. PDAs produced by Palm adopted the Graffiti recognition 
system, and the Tablet PCs running the Microsoft operating system recog-
nize pen input. 

Video OCR locates textual information in a sequence of video frames. 
With Video OCR, program information, reporters’ and interviewees’ 
names, location, sport scores, pricing information, contact information, and 
other on-screen descriptions and annotations become valuable data for pre-
cise navigation of video. 

Compared with OCR for still images, there are two major challenges in 
Video OCR. First, the resolution of video is low, and the text embedded in 
video is small too. The size of a character in video may be less than 10×10 
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pixels. With such low resolution, the regular OCR algorithms may not 
work reliably. Second, the video normally has complex background. Regu-
lar printed documents have a uniform (for example, white) background, 
and document segmentation can be easily conducted. With complex video 
backgrounds, both segmentation and recognition are more difficult. Given 
the large data volume nature of video (e.g. for NTSC video, the frame rate 
is 29.97 frames per second), it is time consuming to conduct OCR on each 
individual frame. A preferred technique is to segment video into shots, 
where the content within each shot remains stable and the onscreen text 
does not change. Then based on all frames within a shot, a simplified and 
effective OCR method is devised. 

Lienhart [Lienhart03] provided an excellent survey on the core concepts 
underlying the texture-based approaches to automatic detection, segmenta-
tion, and recognition of visual text in complex image and videos.  Hua et al 
[Hua02] addressed how to deal with the complex background in video 
OCR. They utilize multiple frames that contain the same text to get all 
clear words from these frames in two steps: (1) use multiple frame verifi-
cation to reduce text detection false alarms; (2) detect and joint every clear 
text block from those frames to form a clearer manmade frame, which is 
sent to the OCR engine. 

Sato et al. [Sato98] tackled the video OCR problem for digital news ar-
chives. They proposed two effective methods to address these two chal-
lenges. First, a sub-pixel interpolation filter is applied to enhance the origi-
nal image resolution by four times in both the horizontal and vertical 
directions. Assume the original image is I(x, y), and the high resolution 
image is L(x, y). Then, L(4x, 4y) = I(x, y) for pixels whose coordinates are 
multiples of 4. For other pixels, the value of L(x, y) is interpolated by the 
following formula, 
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To cope with the complex background issue in video, Sato et al. relied on 
the following observations. In video, the position of video captions is rela-
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tively stable across frames while there are usually motions in complex 
backgrounds. Captions usually have high intensity values such as white 
pixels, and a character normally consists of four different directional line 
elements: vertical, horizontal, left diagonal, and right diagonal. These ob-
servations inspired two techniques to deal with the challenge of complex 
backgrounds. First, a time-based minimum pixel value search was em-
ployed to enhance the text region and smooth out the variation of the 
background scene. Specifically, for a group of n + 1 frames {Li(x, y), …, 
Li+n(x,  y)} that starts from frame i and ends at frame n+i, the filtered image 
Li' (x, y) is computed via Li' (x, y) = min{Li(x, y), …, Li+n(x, y)}. Second, 
four directional line filters are applied to the image, and the output is inte-
grated as a preprocessing of the input image. 

A conventional correlation based pattern matching technique was used 
to recognize characters in video after the above mentioned processing. 
Evaluated on seven 30 minute CNN Headline News videos, the proposed 
method achieved a recognition rate of 83.5%. Although this is not compa-
rable to the performance of regular OCR, it is very valuable for video in-
dexing and searching. 

Commercial products for video OCR are available on the market. Vi-
rage’s on-screen text recognition plug-in provides real-time, automatic de-
tection and identification of on-screen characters and numbers that appear 
in the video frame. Using ConTEXTract™ text extraction and recognition 
technology from SRI International®, this plug-in also allows users to focus 
VideoLogger on regions of interest in the video frame, for example the 
lower third for city or reporter names, or on an upper quadrant for time 
clock display. 

6.7 Concept Detection 

Traditional image search leverages text associated with images, a low level 
content-based matching, or a combination of the two. A more intuitive 
content search needs to facilitate semantic concepts. The signal processing 
community has long studied low level features and derived high-level fea-
tures (or semantic concepts) for large image databases. High-level con-
cepts are generally learned using patterns discovered over a set of images, 
where machine learning techniques are used to create discrete classifiers 
and provide deterministic scores for concept similarity. 

The Disruptive Technology Office (DTO) sponsored the Large-Scale 
Concept Ontology for Multimedia (LSCOM) workshop to develop an ex-
panded multimedia concept lexicon on the order of 1000 [LSCOM06]. 
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Concepts related to events, objects, locations, people, and programs have 
been selected following a multi-step process involving input solicitation, 
expert critiquing, comparison with related ontologies, and performance 
evaluation. 

Tsinghua’s research team proposed to use the multi-label multi-feature 
learning (MLMF learning) [Yuan07] for concept detection. This approach 
warps the labeling information of many concepts with many features to 
learn a joint-concept distribution on the regional level as an intermediate 
representation. IBM research’s approach for concept detection is to apply 
supervised learning algorithm to a set of low-level features [Campbell07]. 
These features include color histogram, color correlogram, color moments, 
co-occurrence texture, wavelet texture grid, edge histogram, and the lo-
cally normalized histogram of oriented gradient (HOG). The learning algo-
rithms include support vector machines, subspace bagging, cross-domain 
learning and so on with different fusion strategies and cross-concept learn-
ing components for leveraging multi-modal and multi-concept relationship. 
Worring et al. developed MediaMill semantic search engine [Worring07], 
which computes a large lexicon of 491 concepts. The system defines a vis-
ual similarity space, a semantic similarity space, a semantic thread space 
and a few browsers, includes the Crossbrowser, the Spherebrowser, the 
RotorBrowser, and the GalaxyBrowser for the users to effectively explore 
the video collection.  

Zavesky et al. [Zavesky07] reported their work on searching visual se-
mantic spaces with concept filters. 374 concept classifier models (derived 
from the LSCOM lexicon [LSCOM06]) were trained over data in the 
TRECVID 2005 development set. TRECVID provides participants with a 
large collection of video data over which experiments are conducted and 
presented in an annual workshop. The training data is a set of over 64k 
TRECVID keyframes with overlapping positive and negative labels. The 
authors extracted low-level features for three modalities: grid-based color 
moments, a global edge direction histograms, and global Gabor texture re-
sponses. Classifier models for each of the 374 concepts were trained with 
support vector machines (SVMs) for the three feature modalities. The final 
score for each concept is computed as a weighted summation of the out-
puts of the three component classifiers. Thus, the final output of concept 
computation is a vector of 374 high-level concept scores for each keyframe 
in a video. 

Here we briefly describe the visual features presented in [Zavesky07]. 
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6.7.1 Color Feature 

Color moment denotes the color distribution by using mean, standard de-
viation, and the third root of the skewness of each color channel 
[Stricker95]. To capture the special information, the image is divided into 
grids with size of M×N. Within each grid, we can compute the color mo-
ments. 

Let the i-th channel of an input image be Ii(x, y), and the j-th grid covers 
a rectangle area specified by the left and right boundary in the x coordinate 
{xj, xj+M} and the bottom and top boundary in the y coordinate {yj, yj+N}. 
Then color moments can be computed by 
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In [Zavesky07], CIE LUV color space is considered, and a 5×5 grid is 
used.  

6.7.2 Texture Feature 

Texture information is useful for visual concept detection. Manjunath and 
Ma [Manjunath96] used Gabor wavelet features for texture analysis and 
achieved good results. A 2-D complex Gabor function g(x, y) is given by, 
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where u=1/2 x, and v=1/2 y. Gabor functions form a complete but non-
orthogonal basis set. A class of self-similar functions, known as Gabor 
wavelets, can be derived from the mother Gabor wavelet g(x, y), 
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K is the total number of orientations. It is clear that gmn(x, y) is a scaled (by 
a m) and rotated (by n) version of g(x, y). The Gabor wavelets provide a 
localized frequency analysis.  

mn  which covers a range 
l h

orientations (K). A strategy for designing this subset is to ensure that the 
half-peak magnitude support of the filter responses in the frequency do-
main touch each other. 

The Gabor wavelet transform for an image I(x, y) is defined as 
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where * denotes the complex conjugate. The mean and the standard devia-
tion of the transform coefficients can be used to represent the texture in-
formation: 
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[Zavesky07] used a combination of four scales and six orientations to 
extract texture features. 

s(x, y) is a complex sinusoidal, known as the carrier, and w(x, y) is a 2-D
Gaussian-shaped function known as the envelope. The Fourier transform
of g(x, y), G(u, v) is 

of frequencies (from U  to U ) at certain scales (S) with a certain number of 
(x, y), is used,For texture analysis, a subset of g
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6.7.3 Edge Feature 

An edge direction histogram denotes the distribution of edge directions. 
The number of bins is 73, which includes 72 bins for edge direction quan-
tized at 5 degrees and one bin is for non-edge points. The Canny filter is 
applied to detect edge points, and for each detected edge point, we calcu-
lated its gradient by a Sobel operator. This histogram is normalized by the 
number of all pixels to cancel the effect of the image size. 

A support vector machine (SVM) is employed to map the low level fea-
tures to concepts. The state of the art of concept detection is far from per-
fect. TRECVID 2007 reported the best run on concept detection achieved 
an inferred average precision (infAP) of 0.13. Even though the concept de-
tection accuracy is not reliable, using concept filters to search and browse 
video content is still very promising [Zavesky07] and for particular con-
cepts the performance is much better.  

6.8 Video Browsing  

An efficient video browsing interface is important for a complete video 
content management system. Generally, we browse videos at three differ-
ent levels. At the first level, we glance at a set of video clips, either as 
search results or a group of videos with similar theme. At this level, we 
normally look at the thumbnails extracted from video or brief descriptions 
of the clip and then choose one or two to dive in. At the second level, we 
skim the content within a single video. At this level, there is still intensive 
user interaction to select the right story to view more details. Depending on 
the interface, viewing at this level is normally nonlinear, and the user inter-
face may provide an efficient navigation capability to ease the task of lo-
cating a specific story. At the third level, the user finds the right video 
segment, and consumes the video linearly. Not much interaction is in-
volved, but at this level, side information can be composed together with 
the original video content to enhance the browsing experience. Certain fast 
playback functions, like fast forward, jumping to the next shot, etc., give 
the user more control over the pace while watching video. In this section, 
we present a few different ways to present video content at these three lev-
els.  

Many different representations for browsing video have been proposed 
including “light-table” or “video mosaic” views which are two-
dimensional arrays of thumbnail images, “story boards” which may in-
clude dialog text with thumbnails, super-resolution or composite still im-
ages as well as summarized videos. Further, where thumbnails are pre-
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sented, animation or video summarization may also be used. Video mosa-
ics present all the content related to a dedicated theme, such as sports, mu-
sic, kids, query of certain topic, etc., on one page. The viewer can then 
navigate from one thumbnail to another, with synchronized audio or to an 
interactive service available on the themed portal (real time info, scores, 
games, etc.). Fig. 6.15 shows an example where multiple video clips are 
played back simultaneously, while the audio of the selected video is played 
back [httv07]. 

 

Fig. 6.15. Video Mosaic. 

For recurring content, like the NBC Nightly News program, calendar 
view is a perfect choice to easily browse the video archive. Fig. 6.16 shows 
a calendar based interface developed in the MIRACLE system. Clicking 
any date will bring the user to the selected program directly. 

Fig. 6.16. Calendar view of a video archive. 
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Chen et al. [Chen07] proposed a platform for showing the retrieved con-
tent in a geospatial and temporal manner. Fig. 6.17 illustrates the capability 
of the platform to search a corpus of collected video over a period of time 
and present an interesting aggregated RSS feed to the user. The figure 
shows the query for “Klose,” the top scoring World Cup 2006 soccer 
player. In this scenario, a user is interested in following a player, namely 
Miroslav Klose, and viewing his goals throughout the tournament. The an-
notations in Fig. 6.17 are as follows: 

1. Feed title – This appears in the media RSS document that links to the 
search engine. 

2. Video clip – This is a link to a video stream corresponding to the 
search term (in this case, the first occurrence of the goal scoring video 
clip). 

3. Thumbnail – This is a link to an image snapshot of one of the goals of 
Klose. 

4. Audio clip – This is a link to the audio stream corresponding to the 
search term. 

5. MediaRSS URL – This is a link to the media RSS (Really Simple 
Syndication) URL that is shown on the map. 

Fig. 6.17. Visualization from a corpus of 2006 FIFA World Cup data. 

Fig. 6.18 is a view of a single video program which conveys the pro-
gram content and permits rapid media browsing. The images are linked to 
the media as is each sentence. The “Program segment” control is used to 
sequentially navigate the document, and the extent of time corresponding 
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to the current page is indicated as a gray bar on a timeline. The timeline 
spans the entire program length, and shows the locations of the query 
matches, with mouse-over indicating context. Clicking on an occurrence 
moves the view to the page containing the hit, and the query matches on 
the current page are highlighted in a different color. 

 

 
Fig. 6.18. Multimedia document page showing term and entity highlighting. 

Huang et al. [Huang99] proposed an automatic semantic extraction 
method for broadcast news. Fig. 6.19 gives the visual presentation for the 
news summary of the day for the NBC Nightly News on the 12th of Febru-
ary, 1998. From this presentation, a user can see immediately that there are 
a total of six headline stories on that particular day. Below the representa-
tive image for each story, the list of its keywords is displayed as a right-to-
left flow dynamically so that users can get a sense of the story from the 
keywords. In this example, the first story is about the weapons inspection 
in Iraq where Russians are suspected to tip Saddam. The second story is 
about the Clinton scandal. The third one is about El Nino. The fourth one 
is about whether secret service workers should testify against the president. 
The fifth is about the high suicide rate among youngsters in an Indian vil-
lage. The sixth is about government's using tax dollars to pay the rent for 

a time varying display to this figure, from these examples, the effective-
ness of this story-telling visual representation for the news summary is 
evident. 

 

empty buildings. Although some information is lost due to converting from 
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Fig. 6.19. Representation of news summary of a program. 

Yeo and Yeung [Yeo97] proposed to use storyboard view to show the 
video content. Fig. 6.20 shows an example of such a story board. The vis-
ual layout and relative sizes of the sub-images reflect the relative domi-
nance, or importance, of the segments they represent.  

 
Fig. 6.20. Storyboard for a story. 

Huang et al. [Huang99] presented a story based news presentation inter-
face, shown in Fig. 6.21. The presentation for each story has three parts: 
the upper left corner is a set of 10 keywords automatically chosen from the 
segmented story based on the relative importance of the words; the right 
part displays the text of the story; the rest is the visual presentation of the 
story consisting of five images chosen from video in the content based 
manner described above. The example shown is the visual representation 
about the El Nino story.  
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Fig. 6.21. Visual representation of a news story. 

It is obvious that the story representation constructed this way is com-
pact, semantically revealing, and visually informative with respect to the 
content of the story. A user can choose either to scroll the text on the right 
to read the story or to click on a thumbnail image to playback video from 
the corresponding keyframe. Compared with linear browsing or low level 
scene cut browsing, this system allows a more effective content based non-
linear information retrieval. 

6.9 Conclusion 

With the booming of the World Wide Web and consumer electronics, 
enormous amounts of video are available for the users. Video data man-
agement becomes important and it requires more advanced video content 
analysis tools to provide more accurate video search and more effective 
video browsing. In this chapter, we introduced and discussed a few com-
ponents of video content analysis. They are shot boundary detection, repre-
sentative image selection, face detection and recognition, text extraction in 
video, concept detection, and video browsing and navigation. Semantics 
embedded in the video stream can be partially extracted from video using 
the presented technologies. To extract more information from video, we 
need more advanced and more reliable video processing tools and multi-
modal processing techniques. 
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7 Audio Processing 

7.1 Introduction 

Audio plays an important role in our daily life. From speech to music, 
from FM radios to Podcast services, from lectures to audio books, audio is 
simply ubiquitous. Through audio, we sense the environment, acquire 
knowledge, exchange information, enjoy melodies, and so on. Nowadays, 
with the ease of audio creation, audio archiving, and audio distribution, the 
amount of audio data is unprecedented, and it far exceeds the capacity of 
individuals to consume. The value of audio data relies not only on its in-
trinsic merit, but also on how easy it is to access. Very often, we want to 
search for a piece of audio that we either heard before, for example, a spe-
cific song or a conference recording, or one that we are not aware of, for 
example, a speech of President Kennedy or a piece of country music. Ob-
viously, metadata, including the title of the audio clip, the name of the pro-
ducer, the category, a short summarization, etc. is extremely useful for 
searching audio. But in many cases, we desire an automatic mechanism to 
discover the audio content since the associated metadata is not sufficient. 
The same method can also enhance metadata based audio query ap-
proaches, because it is able to pinpoint the segment of interest within an 
audio clip more precisely. Content based audio indexing is a promising ap-
proach. With the support of content-based audio indexing and retrieval 
services, locating the desired audio information among a nearly infinite 
amount of audio data, is no longer a daunting task. 

Audio content segmentation and categorization usually serve as the be-
ginning steps in audio content analysis. Then, specific analysis methods 
can be utilized to process different types of audio, for example, speech and 
speaker recognition algorithms can be applied on speech signals, and 
note/pitch detection algorithms can be applied on music signals [Pfeif-
fer96]. Zhang and Kuo [Zhang00] addressed audiovisual data segmenta-
tion, indexing and retrieval based on multimodal content analysis, and con-
tent-based management of audio data. Baluja and Covell [Baluja07] 
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presented an audio identification system, Waveprint, which creates com-
pact fingerprints of audio data by combining computer vision techniques 
and large scale data stream processing algorithms. Thong et al [Thong03] 
presented a distributed multimedia content analysis and indexing architec-
ture. The proposed architecture runs on low cost commodity hardware, and 
it is able to process large volumes of audio recordings with minimal sup-
port and maintenance.  Its success is demonstrated by an audio and video 
search engine, SpeechBot. Lu and Hanjalic [Lu08] presented an unsuper-
vised approach to discover key audio elements in general audio docu-
ments.  The audio elements are treated as the text words in classical text 
document retrieval, and content based audio analysis and retrieval is en-
abled by applying the text analysis theories and methods. 

With the mature of many multimedia content index and analysis tech-
nologies and the rapid growth of multimedia content, MPEG-7 [Chang01], 
formally named “Multimedia Content Description Interface,” is a timely 
standard that allows search engines from different vendors to effectively 
identify multimedia content in large scale data sources. Kim et al discussed 
the details of MPEG-7 audio in their book [Kim06], where the interested 
readers can find more information about audio content description. 

This chapter focuses on the fundamentals of audio analysis, the content-
based audio processing and indexing technologies, and audio query and 
browsing methods. First, we introduce audio signal representation and 
some typical audio features in Sect. 7.2. Then, a set of commonly used au-
dio features are described in Sect. 7.3. In Sect. 7.4, we show speaker seg-
mentation and audio scene segmentation methods. Audio content categori-
zation, including speaker recognition, audio scene detection, and music 
genre detection are addressed in Sect. 7.5. Then, the fundamentals of auto-
matic speech recognition (ASR) are presented in Sect. 7.6. In Sect. 7.7, we 
illustrate a few audio query and browsing techniques. In this section, we 
discuss one-best word search, lattice and phonetic search, and query by ex-
ample. Finally, our conclusion is drawn in Sect. 7.8. 

7.2 Audio Signal and Its Representation 

Figure 7.1 shows the waveform of a typical segment in a news broadcast. 
The audio signal carries rich information at different semantic levels. For a 
human being, we can easily tell speech from the other types of audio, for 
example, music, songs, or noise. Without understanding the linguistic 
meanings of the audio signal, we can also separate male speakers and fe-
male speakers. With a bit more effort, we may recognize the identities for 
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known speakers, or judge weather two segments of speech are from the 
same speaker or not. As one of the most important communication mecha-
nisms, speech signals obviously contain a wealth of linguistic information, 
which is very important for understanding the underlying content.  

Fig. 7.1. Content of audio signal. 

Audio signals can be represented in both the time and frequency do-
mains. Generally speaking, audio signals are non-stationary, but within a 
short period, e.g. 5 - 50 milliseconds, the signal is relatively stationary. 
Within this short piece of audio, which is normally called a frame, we can 
analyze its spectrum. The spectrum is defined as the amplitude of the Fou-
rier transform of the audio frame. Figure 7.2 shows the waveform and the 
spectrum of an audio frame which is 32 ms long. The sampling rate is 16 
kHz, hence the audio frame contains 512 samples.  

Fig. 7.2. Waveform and spectrum of an audio frame. 
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7.3 Audio Features 

There are many features that can be used to characterize audio signals 
[Wold96, McKin03]. Usually audio features are extracted at two levels: 
short-term frame-level and long-term clip-level. The concept of the audio 
frame comes from traditional speech signal processing, where analysis 
over a very short time interval has been found to be most appropriate. For 
a feature to reveal the semantic meaning of an audio signal, analysis over a 
much longer period is necessary, usually from one second to several tens 
of seconds. Here we call such an interval an audio clip.  

A clip consists of a sequence of frames and clip-level features that usu-
ally characterize how frame-level features change over a clip. The clip 
boundaries may be the result of audio segmentation such that the frame-
level features within each clip are similar. Alternatively, fixed length clips, 
usually 1 to 2 seconds (s) may be used. Both frames and clips may overlap 
with their previous ones, and the overlapping lengths depend on the under-
lying application. Figure 7.3 illustrates the relationship of frames and clips. 
In the following, we first describe frame-level features, and then move 
onto clip-level features. 

Fig. 7.3. Audio clips and audio frames. 

7.3.1 Frame-Level Features 

Most of the frame-level features are inherited from traditional speech sig-
nal processing. Generally they can be separated into two categories: time-
domain features, which are computed from the audio waveforms directly, 
and frequency-domain features, which are derived from the Fourier trans-
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form of samples over a frame. Some features, for example, pitch and linear 
predicative code (LPC) coefficients, have an interpretation in both time 
and frequency domains. In the following, we use N to denote the frame 
length, and sn(i) to denote the i-th sample in the n-th audio frame.  

Volume  

The most widely used and easy-to-compute frame feature is volume.  Vol-
ume is a reliable indicator for silence detection, which may help to seg-
ment an audio sequence and to determine clip boundaries. Normally vol-
ume is approximated by the root mean square (RMS) of the signal 
magnitude within each frame. Specifically, the volume of frame n is calcu-
lated by 
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Note that the volume of an audio signal depends on the gain value of the 
recording and digitizing devices. To eliminate the influence of such de-
vice-dependent conditions, we may normalize the volume for a frame by 
the maximum volume of some number of previous frames. 

Zero Crossing Rate  

Besides the volume, zero crossing rate (ZCR) is another widely used tem-
poral feature. To compute the ZCR of a frame, we count the number of 
times that the audio waveform crosses the zero axis. Formally, 
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where fs represents the sampling rate. ZCR is one of the most indicative 
and robust measures to discern unvoiced speech (i.e. the consonant sounds 
produced in the mouth not using the vocal chords). Typically, unvoiced 
speech has a low volume but a high ZCR. By using ZCR and volume to-
gether, one can prevent low energy unvoiced speech frames from being 
classified as silent. 

Pitch  

Pitch is the fundamental frequency of an audio waveform, and is an impor-
tant parameter in the analysis and synthesis of speech and music. Normally 
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only voiced speech and harmonic music have well-defined pitch. But we 
can still use pitch as a low-level feature to characterize the fundamental 
frequency of any audio waveform. The typical pitch frequency for human 
speech is between 50 and 450 Hz, whereas the pitch range for music is 
much wider. It is not easy to robustly and reliably estimate the pitch value 
for an audio signal. Depending on the required accuracy and complexity 
constraints, different methods for pitch estimation can be applied [Hess83]. 

One can extract pitch information by using either temporal or frequency 
analysis. Temporal estimation methods rely on computation of the short 
term autocorrelation function Rn(k) or the average magnitude difference 
function (AMDF) An(k), where  
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Figure 7.4 shows the autocorrelation function and AMDF for a typical 
voiced speech sample. We can see that there exist periodic peaks in the 
auto-correlation function. Similarly, there are periodic valleys in the 
AMDF. Here peaks and valleys are defined as local extremes that satisfy 
additional constraints in terms of their values relative to the global mini-
mum and their curvatures. For example, the AMDF in Fig. 7.4 has three 
valleys (marked with circles), and the pitch frequency is the reciprocal of 
the time period between the origin and the first valley. Similarly, there are 
three peaks in the autocorrelation graph in Fig. 7.4. Such valleys (and 
peaks) exist in voiced and music frames and vanish in noise or unvoiced 
frames.  

 
Fig. 7.4. AMDF and auto-correlation functions of an audio frame. 



7.3 Audio Features      151 

In frequency-based approaches, pitch is determined from the periodic 
structure in the magnitude of the Fourier transform or cepstral coefficients 
of a frame. For example, we can determine the pitch by finding the maxi-
mum common divider for all the local peaks in the magnitude spectrum. 
When the required accuracy is high, a large size Fourier transform needs to 
be computed, which is time consuming. 

Spectral Features  

The spectrum of an audio frame refers to the magnitude value of the Fou-
rier transform of the samples in the frame. Normally, we use the spectro-
gram, which is the spectrum of successive overlapping frames, to show the 
spectral structure of an audio stream. Figure 7.5 shows the spectrograms of 
three audio clips digitized from TV broadcasts. The commercial clip con-
tains male speech over a music background, the news clip includes clean 
male speech, and the sports clip is from a live broadcast of a basketball 
game. Obviously, the difference among these three clips is more noticeable 
in the frequency domain than in the waveform domain. Therefore, features 
computed from the spectrum are likely to help audio content analysis.  

(a) Commercial (b) Basketball (c) News 
Fig. 7.5. Spectrums of three audio clips 

The difficulty with using the spectrum itself as a frame-level feature lies 
in its very high dimensionality. For practical applications, it is necessary to 
find a more succinct description. Let Sn( ) denote the power spectrum (i.e. 
squared magnitude of the spectrum) of frame n. If we think of  as a ran-
dom variable, and Sn( ) normalized by the total power as the probability 
density function of , we can define the mean and standard deviation of . 
It is easy to see that the mean measures the frequency centroid (FC), 
whereas the standard deviation measures the bandwidth (BW) of the sig-
nal. They are defined as 
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It has been found that FC is related to the human sensation of the bright-
ness of a sound we hear. 

In addition to FC and BW, Liu et al. proposed to use the ratio of the en-
ergy in a frequency subband to the total energy as a frequency domain fea-
ture [Liu98], which is referred to as the energy ratio of the subband 
(ERSB). Considering the perceptual property of human ears, the entire fre-
quency band is divided into four subbands, each consisting of the same 
number of critical bands, where the critical bands correspond to cochlear 
filters in the human auditory model [Rabiner93]. Specifically, when the 
sampling rate is 22,050 Hz, the frequency ranges for the four subbands are 
0–630 Hz, 630–1720 Hz, 1720–4400 Hz and 4400–11,025 Hz. Because the 
summation of the four ERSBs is always one, only first three ratios were 
used as audio features, referred as ERSB1, ERSB2, ERSB3, respectively. 

Scheirer et al. used a spectral rolloff point as a frequency domain feature 
[Scheirer97], which is defined as the 95th percentile of the power spec-
trum. This is useful to distinguish voiced from unvoiced speech. It is a 
measure of the “skewness” of the spectral shape, with a right-skewed dis-
tribution having a higher value. 

Mel-frequency cepstral coefficients (MFCC) or cepstral coefficients 
(CC) [Rabiner93] are widely used for speech recognition and speaker rec-
ognition. While both of them provide a smoothed representation of the 
original spectrum of an audio signal, MFCC further considers the non-
linear property of the human hearing system with respect to different fre-
quencies. Based on the temporal change of MFCC, an audio sequence can 
be segmented into different segments, so that each segment contains music 
of the same style, or speech from one person. Boreczky and Wilcox used 
12 cepstral coefficients along with some color and motion features to seg-
ment video sequences [Boreczky98]. 
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Linear Predicative Code (LPC)  

The linear predicative code is developed based on the physical model of 
human speech [Huang01]. While articulating, our lungs push the air 
through the vocal cords, then through the vocal tract (which may include 
the nasal cavity), and finally out of the mouths. For voiced sound, the vo-
cal cords vibrate at a certain period, which is called pitch, while for un-
voiced sound, the vocal cords remain open. The shape of the vocal tract 
determines the sounds we make. The mathematical model is shown in Fig. 
7.6. 

 
Fig. 7.6. Mathematical model of LPC. 

H(z) is modeled by an all-pole filter,  
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It is clear that this model predicts the current sample by a linear combi-
nation of its previous p samples, and in fact, H(z) represents a smoothed 
spectrum of the original speech signal. By minimizing the prediction error, 
we can determine the LPC coefficients {a1 ... ap} by either the covariance 
method or the autocorrelation method. There are a few very efficient algo-
rithms for computing the LPC coefficients, e.g. the Levinson–Durbin, lat-
tice, and Schur algorithms [Huang01].  

Many acoustic features are derived from or are highly pertinent to LPC 
coefficients. They include partial correlation (PARCOR) coefficients, Log 
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area ratio (LAR) coefficients, line spectrum pair (LSP) coefficients, line 
spectrum frequency (LSF) coefficients, etc. [Rabiner93]. 

7.3.2 Clip-Level Features 

As described before, frame-level features are designed to capture the short-
term characteristics of an audio signal. To extract the semantic content, we 
need to observe the temporal variation of frame features on a longer time 
scale. This consideration leads to the development of various clip-level 
features, which characterize how frame-level features change over a clip. 
Therefore, clip-level features can be grouped by the type of frame-level 
features that they are based-on. 

Volume-Based 

To measure the variation of volume, Liu et al. proposed several clip-level 
features [Liu98]. The volume standard deviation (VSTD) is the standard 
deviation of the volume over a clip, normalized by the maximum volume 
in the clip. The volume dynamic range (VDR) is defined as [max(v) –
min(v)] / max(v), where min(v) and max(v) are the minimum and maxi-
mum volume within an audio clip. Obviously these two features are corre-
lated, but they do carry some independent information about the scene con-
tent. Another feature is volume undulation (VU), which is the 
accumulation of the difference of neighboring peaks and valleys of the 
volume contour within a clip.  

Scheirer proposed to use the percentage of “low-energy” frames 
[Scheirer97], which is the proportion of frames with RMS volume less 
than 50% of the mean volume within one clip. Liu et al. used a non-
silence-ratio (NSR) [Liu98], the ratio of the number of non-silent frames to 
the total number of frames in a clip, where silence detection is based on 
both volume and ZCR. 

The volume contour of a speech waveform typically peaks at 4 Hz. To 
discriminate speech from music, Scheirer et al. proposed a feature called 
the 4 Hz modulation energy (4ME) [Scheirer97], which is calculated based 
on the energy distribution in 40 subbands. Liu et al. proposed a different 
definition that can be directly computed from the volume contour. Specifi-
cally, it is defined as 
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where C( ) is the Fourier transform of the volume contour of a given clip 
and W( ) is a triangular window function centered at 4 Hz. Speech clips 
usually have higher values of 4ME than music or noise clips. 

ZCR-Based 

Normally for speech signals, low and high ZCR segments are interlaced. 
This is because voiced and unvoiced sounds often occur alternatively in a 
speech. This is a distinctive characteristic of speech from other types of 
audio, including music or stadium noise background. Liu et al. used the 
standard deviation of ZCR (ZSTD) within a clip to classify different audio 
contents [Liu98]. Saunders proposed to use four statistics of the ZCR as 
features [Saunders96]. These are: (1) standard deviation of first order dif-
ference; (2) third central moment about the mean; (3) total number of zero 
crossings exceeding a threshold; and (4) difference between the number of 
zero crossings above and below the mean values. Combined with the vol-
ume information, the proposed algorithm can discriminate speech and mu-
sic at a high accuracy of 98%. 

Pitch-Based 

The patterns of pitch tracks of different audio contents vary a lot. For 
speech clips, voiced segments have smoothly changing pitch values, while 
no pitch information is detected in silent or unvoiced segments. For audio 
with prominent noisy background, no pitch information is detected either. 
For a gentle music clip, since there are always dominant tones within a 
short period of time, many of the pitch tracks are flat with constant values. 
The pitch frequency in a speech signal is primarily influenced by the 
speaker (male or female), whereas the pitch of a music signal is dominated 
by the strongest note that is being played. It is not easy to derive the scene 
content directly from the pitch level of isolated frames; but the dynamics 
of the pitch contour over successive frames appear to reveal the scene con-
tent more. 

Three clip-level features can be used to capture the variation of pitch 
[Liu98]: standard deviation of pitch (PSTD), smooth pitch ratio (SPR), and 
non-pitch ratio (NPR). SPR is the percentage of frames in a clip that have 
similar pitch as the previous frames. This feature is used to measure the 
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percentage of voiced or music frames within a clip, since only voiced and 
music have smooth pitch. On the other hand, NPR is the percentage of 
frames without pitch. This feature can measure how many frames are un-
voiced speech or noise within a clip. 

Frequency-Based 

Given frame-level features that reflect frequency distribution, such as FC, 
BW, and ERSB, one can compute their mean values over a clip to derive 
corresponding clip-level features. Since the frames with a high energy 
have more influence on the perceived sound by the human ear, Liu et al. 
proposed using a weighted average of corresponding frame-level features, 
where the weighting for a frame is proportional to the energy of the frame. 
This is especially useful when there are many silent frames in a clip be-
cause the frequency features in silent frames are almost random. By using 
energy-based weighting, their detrimental effects can be removed. 

Zhang and Kuo used spectral peak tracks (SPTs) in a spectrogram to 
classify audio signals [Zhang99]. First, SPT is used to detect music seg-
ments. If there are tracks which stay at about the same frequency level for 
a certain period of time, this period is considered a music segment. Then, 
SPT is used to further classify music segments into three subclasses: song, 
speech with music, and environmental sound with music background. 
Song segments have one of three features: ripple-shaped harmonic peak 
tracks due to voice sound, tracks with longer duration than speech, and 
tracks with fundamental frequency higher than 300 Hz. Speech with music 
background segments have SPTs concentrated in the lower to middle fre-
quency bands and have lengths within a certain range. Those segments 
without certain characteristics are classified as environmental sound with 
music background. 

There are many other useful audio clip features. Interested readers are 
referred to [Chang96, Lienhart99, Minami98]. 

7.4 Audio Segmentation 

Audio segmentation is the task of finding the abrupt changes along the au-
dio stream. This task is domain specific, and needs different approaches 
for different requirements. In this section, we present two segmentation 
tasks we investigated at two different levels. One is to segment speaker 
boundaries at the frame level, and the other is to segment audio scenes, for 
example, commercials and news reporting in broadcast programs at the 
clip level.  
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7.4.1 Speaker Segmentation 

Speaker segmentation is important for speech recognition and audio con-
tent analysis. With speaker adaptation, speech recognizers can significantly 
improve the accuracy. Speaker information also provides useful cues for 
indexing audio content. For example, a video conference call may have a 
few participants, and it is a very useful feature to browse the content of 
certain speakers. More information about speaker segmentation can be 
found in [Tranter06]. 

Liu and Saraclar proposed an iterative speaker segmentation method in 
[Liu07]. The audio is first segmented into short segments on the phoneme 
level, where the duration of each segment is in the range of 200 ms to 1 

The iterative speaker segmentation contains a loop of speaker splitting 
procedures. In each iteration, the algorithm first increases the number of 
speakers (NS), and then evaluates all possible splits: splitting speaker i (i = 
1, ..., NS–1) into speakers i and NS. For each possible split, the speaker 
split procedure is applied, and the corresponding BIC value (BICNS) and 
speaker labels (LNS) are computed. Among the NS–1 ways of splitting, the 
one with the maximum BIC value is chosen, and its BIC value and speaker 
labels are kept as the overall BIC value (BICNS) and speaker labels (LNS) 
for the current iteration. The iteration terminates when the BIC value no 
longer increases. 

The speaker label refinement is also an iterative procedure. For each it-
eration, a set of GMMs is built for all speakers based on the current seg-
ment labels. Then all segments are relabeled using the maximum likeli-
hood method based on current speaker models. If the speaker labels 
converge or the number of iterations reaches a preset value, the refinement 
iteration stops. Otherwise, a new iteration starts.  

The post-processing step merges adjacent segments with the same 
speaker labels, and smoothes the segments that are too short, e.g. less than 
300 ms. Short segments are merged into the longer neighboring segments. 

The presented algorithm also detects the change of acoustic channel 
properties, for example, if the same speaker moved to a different environ-
ment, a segment boundary will be declared, although it is not a real 
speaker change. Testing on two half hour news sequences, 93% true 
speaker boundaries are detected with a false alarm rate of 22%.  

second. Similar to other tasks such as speaker gender classification, the
same 39 MFCC features are adopted and each speaker is modeled using a 
GMM model. Bayesian Information Criteria (BIC) [Chen98] is employed
to measure how the speaker models fit the data. Figure 7.7 shows the
diagram of the developed algorithm. 
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Fig. 7.7. Speaker segmentation algorithm. 

7.4.2 Audio Scene Segmentation 

Here, the audio scenes we considered are different types of TV programs, 
including news reporting, commercial, basketball, football, and weather 
forecasts. To detect audio scene boundaries, a 14 dimensional audio fea-
ture vector is computed over each audio clip. The audio features consist of 
VSTD, VCR, VU, ZSTD, NSR, 4ME, PSTD, SPR, NPR, FC, BW, 
ERSB1, ERSB2, ERSB3. For a clip to be declared as a scene change, it 
must be similar to all the neighboring future clips, and different from all 
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the neighboring previous clips. Based on this criterion, we propose using 
the following measure: 
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where f(i) is the feature vector of the i-th clip, with i = 0 representing the 
current clip, i > 0 a future clip, and i < 0 a previous clip, *  is the L2 
norm, var( … ) is the average of the squared Euclidean distances between 
each feature vector and the mean vector of the N clips considered, and c is 
a small constant to prevent division by zero. When the feature vectors are 
similar within the previous N clips and the following N clips, respectively, 
but differ significantly between the two groups, a scene break is declared. 
If two breaks are closer than N clips away, the one with smaller scene-
change-index value is removed. The selection of the window length N is 

(a) Semantic contents of the sequence 

(b)  Scene-change-index 
Fig. 7.8. Content and scene-change-index for one audio stream. 

critical: If N is too large, this strategy may fail to detect scene changes bet-
ween short audio shots. It will also add unnecessary delay to the process-
ing. Through trial-and-error, it is found that N = 6 gives satisfactory results
[Liu98].  
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Figure 7.8(a) shows the content of one testing audio sequence used in 
segmentation. This sequence is digitized from a TV program that contains 
seven different semantic segments. The first and the last segments are both 
football games, between which are the TV station’s logo shot and four dif-
ferent commercials. The duration of each segment is also shown in the 
graph. Figure 7.8(b) shows the scene-change-index computed for this se-
quence. Scene changes are detected by identifying those clips for which 

min

3, which have been found to yield good results through trial-and-error. In 
these graphs, mark “o” indicates real scene changes and “*” detected scene 
changes. All the real scene changes are detected using this algorithm. Note 
that there are two falsely detected scene changes in the first segment of the 
sequence. They correspond to the sudden appearance of the commentator’s 
voice and the audience’s cheering. 

7.5 Audio Content Categorization 

After audio segmentation, we need to classify each segment into prede-
fined categories. The categories are normally semantically meaningful 
high-level labels that are determined from low-level features. For example, 
for speech, the categories can be spoken languages, speaker genders, 
speaker identifications, etc. For music, the categories can be classic, pop, 
jazz, and so on. The pattern recognition mechanism fits in this gap, and 
maps the distribution of low level features to high level semantic concepts. 
In the section, we will present three different audio classification situa-
tions: speaker recognition, speech/non-speech classification, and music 
genre classification. 

7.5.1 Speaker Recognition  

The goal of speaker recognition is to automatically recognize the identifi-
cation of a speaker based on his/her voice. Speaker recognition provides 
complementary information for other biometric authentication methods, 
including fingerprints, face, and iris. It has wide applications, including 
user authentication in a dialog system, surveillance, audio indexing and re-
trieval, and forensic speaker recognition. For example, occurrences of the 
anchorpersons in broadcast news often indicate semantically meaningful 
boundaries for reported news stories. Researchers have been working on 
this topic for more than three decades. To push forward more effective ap-

. minDD  is set to the scene-change-indices are higher than a threshold, 
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proaches, NIST has been coordinating speaker recognition evaluation since 
1996. 

There are two main tasks in speaker recognition: speaker verification 
and speaker identification. The speaker verification task is to verify the 
claimed identity of a speaker. This is refereed to as an open-set task since 
the imposters are not known to the system. Speaker identification refers to 
the task of identifying a speaker from a set of known speakers. This is refe-
reed to a closed-set task since the input voice is from a prior known 
speaker. 

Depending on whether the spoken text is predefined or not, speaker rec-
ognition contains two operation modes: text-dependent and text-
independent. For the text-dependent case, the speaker is prompted to repeat 
certain text, either a combination of numbers or phrases. Since the system 
knows what the speaker speaks, more effective algorithms can be applied 
to achieve higher recognition accuracy. For the text-independent case, the 
speaker can speak anything they want. Surely, this is a more flexible mode 
of operation, but the system will need more data for training, and the over-
all performance is not as good as the text-dependent cases. 

Many acoustic features have been investigated for speaker recognition 

Acoustic features for speaker recognition should have high speaker dis-
crimination power, which means high inter-speaker variability and low in-
tra-speaker variability. Adopted features include linear prediction coeffi-
cients (LPC), filter-bank, cepstrum coefficients, log-area ratio (LAR), LSP, 
MFCC, etc. within which MFCC gains more prevalence due to its effec-
tiveness [Campbell97]. In terms of speaker pattern matching methods, 
there are generally two categories of approaches: template model and sta-
tistical model. Vector quantization, nearest neighbor, and dynamic time 
warping (DTW) based on certain distance measures (e.g. the Mahalanobis 
distance) belong to the first category. Gaussian mixture models, hidden 
Markov models, and support vector machines are the most popular ones in 
the second category. 

The performance of speaker recognition systems varies in a wide range 
since the amount and the quality of the training/testing data are very differ-

formance achieved by four typical systems shown in Table 7.1. The equal 
error rate (ERR) points are used as a performance summary, where ERR is 
an indicator where the false alarm is equal to the false recognition.  

Huang et al. studied anchorperson detection, which can be categorized 
as a speaker verification problem [Huang99]. Detection of anchorperson 
segments is carried out using text independent speaker recognition tech-
niques. The target speaker (anchorperson) and background speakers are 

tasks in various applications with different constraints and requirements.

ent [Faundez05]. Reynolds [Reynolds02] provided an overview of the per-
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represented by 64 component Gaussian mixture model with diagonal co-
variance matrices. Again, the audio features utilized are 13 MFCC coeffi-
cients and their first and second order derivatives to form 39 features in to-
tal. A maximum likelihood classifier is applied to detect the target speaker 
segments. Testing on a dataset of four half-hour news sequences, this ap-
proach successfully detects 91.3% of real anchorperson speech, and the 
false alarm rate is 1%.  

Table 7.1. Performance of typical speaker verification systems. 

Task Text-dependent Text-independent 
Data type Combinations 

lock phrases 
10 digit string Conversational 

speech 
Read sentences 

Data quality Clean telephone data Noisy Radio 
data 

Enrollment 3 minutes 2 strings 2 minutes 30 seconds 
Testing 2 seconds 1 string 30 seconds 15 seconds 
ERR (%) 0.1 - 1 1-5 7-15 20-35 

  
While most classifiers described in this section, e.g. GMM, try to model 

the feature density of each speaker, it is interesting to introduce the con-
cept of discriminative learning, where the focus is on learning the class 
boundaries. Studies have shown that discriminative learning can further 
improve the speaker identification performance.   

7.5.2 Audio Scene Detection  

Audio scenes are segments with homogeneous content in an audio stream. 
For example, broadcast news programs generally consist of two different 
audio scenes: news reporting and commercials. Discriminating them is 
very useful for indexing news content. One obvious usage is to create a 
summary of news program, where commercials segments are removed. 

Depending on the application, different categories of audio scenes and 
different approaches are adopted. Saunders [Saunders96] considered the 
discrimination of speech from music. Saraceno and Leondardi further clas-
sified audio into four groups: silence, speech, music, and noise [Sara-
ceno97]. The addition of the silence and noise categories is appropriate, 
since a large silence interval can be used as segment boundaries, and the 
characteristic of noise is very different from that of speech or music.  

A more elaborate audio content categorization was proposed by Wold et 
al. [Wold96], which divides audio content into ten groups: animal, bells, 
crowds, laughter, machine, instrument, male speech, female speech, tele-
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phone, and water. To characterize the difference among these audio 
groups, Wold et al. used mean, variance, and auto correlation of loudness, 
pitch, brightness (i.e. frequency centroid) and bandwidth as audio features. 
A nearest neighbor classifier based on a weighed Euclidean distance meas-
ure was employed. The classification accuracy is about 81% over an audio 
database with 400 sound files.  

Video search can obviously benefit from the ability to classify media 
based on the audio content. For example, TV broadcasts can be classified 
into categories such as news reporting, commercial, weather forecast, bas-
ketball game, and football game [Liu98]. Based on a set of 14 audio fea-
tures extracted from audio energy, zero crossing rate, pitch, and spectro-
gram, a three layer feed forward neural network classifier achieves 72.5% 
accuracy. A classifier based on hidden Markov model further increases the 
accuracy by 12%.  

Another interesting study related to general audio content classification 
is by Zhang and Kuo [Zhang99]. They explored five kinds of audio fea-
tures: energy, ZCR, fundamental frequency, timber, and rhythm. Based on 
these features, a hierarchical system for audio classification and retrieval 
was built. In the first step, audio data is classified into speech, music, envi-
ronmental sounds, and silence using a rule-based heuristic procedure. In 
the second step, environmental sounds are further classified into applause, 
rain, bird sound, etc. using an HMM classifier. These two steps provide the 
so-called coarse-level and fine-level classification. The coarse-level classi-
fication achieves 90% accuracy and the fine-level classification achieves 
80% accuracy in a test involving 10 sound classes. 

7.5.3 Music Genre Classification 

Digital music, in all kinds of formats including MPEG Layer 3 (MP3), Mi-
crosoft Windows Media format, RealAudio, MIDI, etc. is a very popular 
type of traffic in the Internet. When music pieces are created, they are nor-
mally assigned with related metadata by producers or distributors, for ex-
ample, title, music category, author name, and date. Unfortunately, most of 
the metadata is not available or is lost in the stages of music manipulation 
and format conversion. Music genre, as a specific metadata, is important 
and indispensable for music archiving and querying. For example, a simple 
query to find all pop music in a digital music database requires the cate-
gory information. Since manually re-labelling is time consuming and in-
consistent, we need an automatic way to classify music genre. 

Music genre classification has attracted a lot of research effort in recent 
years [Slaney08]. Tzanetakis et al. [Tzanetakis02] explored the automatic 
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classification of audio signals into a hierarchy of music genres. On the first 
level, there are 10 categories: classical, country, disco, hiphop, jazz, rock, 
blues, reggae, pop, and metal. On the second level, classical music is fur-
ther separated into choir, orchestra, piano, and string quartet, and jazz is 
further split into bigband, cool, fusion, piano, quartet, and swing. Three 
sets of audio features are proposed, which reflect the timbral texture, 
rhythmic content and pitch content of audio signal, respectively. Timbral 
texture features include spectral centroid, spectral rolloff, spectral flux, 
zero crossing rate, and MFCC. Rhythmic content features are calculated 
based on the wavelet transform, where the information of main beat, sub-
beats and their periods and strengths are extracted. Pitch content features 
are extracted based on multiple pitch detection techniques. Utilized pitch 
features include the amplitude and period of the maximum peaks of the 
pitch histogram, pitch interval between the two most prominent peaks of 
the pitch histogram, and the sum of the histogram. Tzanetakis et al. tested 
different classifiers, including a simple Gaussian classifier, a Gaussian 
mixture model classifier, and a K-nearest neighbour classifier. Among 
them, GMM with 4 mixtures achieves the best classification accuracy, 
which is 61%. Considering that a human being makes 20–30% errors on 
classifying musical genre in a similar task, the performance of automatic 
music genre classification is reasonably good. 

Lambrou et al. [Lambrou98] investigated the task of classifying an au-
dio signal into three different music styles: rock, piano, and jazz. They 
used zero crossing rate and statistical signal features in the wavelet trans-
form domain as acoustic features. Overall, seven statistics are computed 
including first order statistics: mean, variance, skewness, and kurtosis, and 
second order statistics: angular second moment, correlation, and entropy. 
Lambrou et al. benchmarked four different classifiers: minimum distance 
classifier, K-nearest neighbors classifier, least squares minimum distance 
classifier (LSMDC), and quadrature classifier. Simulation results show that 
LSMDC gives the best performance with an accuracy of 91.67%. 

7.6 Speech Recognition 

Automatic speech recognition (ASR) is a process to convert a stream of 
acoustic signals into a sequence of words by machines. Built on decades of 
intensive research and engineering, ASR technology has reached its matur-
ity for a wide range of real applications, from speaker dependent dictation 
tasks to speaker independent very large vocabulary conversational speech 
recognition tasks. Lexicons and grammars may range from simple com-
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mand and control and digit recognition to 200,000 word vocabularies or 
even systems for recognizer one million names. Systems are developed to 
handle acoustic conditions from mobile telephony up through broadcast 
quality speech.  

Most state of the art speech recognizers adopt a statistical approach 
[Jelinek97]. Let A denote a sequence of acoustic features, A = {a1, a2, 
…ai, … , aI}, where each ai  is a feature vector, and let W denote a string 
of words, W = {w1, w2, …, wj, …, wJ}, where each wi is a word. The core 
task of speech recognition is to find the word string W', that maximize the 
probability of p(W|A). 

Following the Bayes’ formula, p(W|A) can be rewritten as, 
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Since p(A) is a constant that does not depend on W, it can be ignored 
while searching W' as follows, 
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p(A|W) is the probability of speech feature A while W is spoken, and it re-
lies on the lexicon, which determines the pronunciations of words, and the 
acoustic model, which models the sound units (e.g. phonemes) based on 
speech features. p(W) is the a priori probability of W, which can be de-
composed as, 
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The approximation in the formula is a practical way to reduce the com-
plexity of language model. This kind of language model is called an n-
gram, where the probability of speaking word wj only depends on the last 
n–1 words. A popular choice in many real speech recognition systems is 3-
gram. 

Figure 7.9 shows the block diagram of a typical ASR system. It is com-
posed of two major components: the front end and the decoder. The front 
end block extracts spectrum representation of the speech waveform. The 
most widely used features are Mel Frequency Cepstral Coefficients 
(MFCC). The decoder block searches the best match of word sequences for 
the input acoustic features based on acoustic model, lexicon, and language 
model. 

)|( WAp
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Fig. 7.9.  Diagram of automatic speech recognition system. 

Speech recognition is still an active research area in many academic and 
industrial laboratories, including CMU, MIT, Microsoft, AT&T, BBN, 
IBM, Nuance, etc. AT&T has been well known for its contributions in 
speech recognition. In the following we briefly describe the architecture of 
the Watson speech recognition engine developed at AT&T Research Labs.  

AT&T Watson [Goffin05] is a real-time low latency speech recognizer, 
which utilizes continuous-density hidden Markov models for acoustic 
modeling and finite state networks for language modeling. The core recog-
nizer of Watson is built on a Controller (CTL), which has access to a Data 
Store (DS) and an Execution Context (EC). The DS handles all data used 
by the recognizer, including word dictionaries, acoustic models, and lan-
guage models. The EC represents the algorithm pipeline, including feature 
extraction and normalization, endpointing, barge-in detection, decoding, 
and scoring.   

Figure 7.10 shows a real time, low latency, large vocabulary speech rec-
ognition system for broadcast news developed by AT&T. The vocabulary 
is over 210,000 words, and the achieved word accuracy is typically be-
tween 75 and 95% depending on the conditions. 

7.7 Audio Query and Browsing Techniques 

Audio content query and browsing is an as important issue for content 
analysis. In this section, we first present SpeechLogger [Saraclar04b], a re-
search system for searching and browsing spoken documents, or the spo-
ken component of multimedia communications, and then show an audio 
query by example system. 
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Fig. 7.10. AT&T real time broadcast news speech recognition system. 

7.7.1 SpeechLogger 

Figure 7.11 shows the overview of SpeechLogger system.  The audio can 
be recorded via telephone or microphone or can be prerecorded. Alterna-
tively, the audio can be obtained by separating the audio from video 
broadcasts. Once various speech processing techniques are applied and the 
speech is indexed, it is possible to search and browse the audio content. 
 

Fig. 7.11. SpeechLogger system. 
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Once a new completed audio recording is available, the following audio 
processing steps can begin: speaker segmentation, speech recognition, 
transcription alignment, keyword extraction, audio compression, and 
speech indexing. Each step will be described in more detail below. We at-
tempt to distinguish the different speakers from each other in the speaker 
segmentation component. The speech recognition component includes 
various approaches including best word, best phone, word lattice, phone 
lattice, and hybrid hypotheses. If a transcript is available, the transcript can 
be synchronized (or aligned) in time with the speech recognition output. 
The keyword extraction component generates the most salient words found 
in the speech recognition output (best word) or transcript (if available) and 
can be used to determine the nature of the spoken communications. The 
audio compression component compresses the audio file and creates an 
MP3 audio file which is copied to a media server for delivery and presen-
tation via the Web-enabled user interface. The final step in the processing 
is text and lattice indexing. 

The user interface applies for telephone conversations, teleconferences, 

each of these types of spoken communications. Here, we focus on telecon-
ference call recording as a use scenario. Once the user has found the de-
sired call using one of the retrieval modules (one-best word, one-best 
phone string, word lattice, phone lattice, or both word and phone lattice), 
the user can navigate the call using the user interface elements described 
below. 

One-Best Word Search 

For the one-best word index, Fig. 7.12 shows the user interface for search-
ing, browsing, and playing back spoken documents. The user can browse 
the call at any time by clicking on the timeline to start playing at that loca-
tion on the timeline. The compressed audio file (MP3) that was created 
during the processing would be streamed to the user. The user can at any 
time either enter a word (or word phrase) in the Search box or use one of 
the common keywords generated during the keyword extraction process. 
The text index would be queried and the results of the search would be 
shown. The timeline plot at the top would show all the hits or occurrences 
of the word as thin tick marks. The list of hits would be found under the 
keyword list. In this case, the word “chapter” was found four times and the 
time stamps are shown. The time stamps come from the results of the 
automatic speech recognition process when the one-best words and time 
stamps were generated. The search term “chapter” is shown in bold with 
five context words on either side. The user can click on any of these four 

and broadcast news, although the audio and speaker quality does vary for 
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hits to start playing where the hit occurred. The solid band in the timeline 
indicates the current position of the audio being played back. The entire 
call, in this case, is 9:59 minutes long and the audio is playing at the be-
ginning of the fourth hit at 5:20 minutes. As part of the processing, caption 
data is generated in Microsoft’s SAMI (Synchronized Accessible Media 
Interchange) format from the one-best word output in order to show cap-
tion text during the playback. The caption text under the timeline will be 
updated as the audio is played. At this point in the call, the caption text is 
“but i did any chapter in a”. This caption option can be disabled by click-
ing on the CC icon and can be enabled by clicking on the CC icon again. 
The user can also speed up or slow down the playback at any time by using 
the “Speed” button. The speed will toggle from 50% (slow) to 100% to 
150% (fast) to 200% (faster) and then start over at 50%. This allows the 
user to more quickly peruse the audio file. Techniques such as the Wave-
form Similarity Overlap-and-Add (WSOLA) [Verhelst93] can be used to 
increase playback rate while preserving pitch, and pause removal can be 
employed to increase the intelligibility of speech playback at higher speed. 

 

Fig. 7.12. User interface for ASR text search. 
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Lattice and Phonetic Search 

Figure 7.13 shows a word lattice (highly-pruned) that is used in the recog-
nition process [Saraclar04a]. Each arc corresponds to a word. The normal-
ized probability of each world is shown next to the word. The 1-best tran-
script approach finds the path inside the lattice with the maximum 
probability. In this example this is the path that represents the string of 
words “a conference is being recorded.” While this is mostly correct, the 
correct string of words in the audio is “our conference is being recorded.” 
By retaining only the 1-best transcription, we lose the possibility of finding 
any hits for the word “our” (which actually is in the spoken words). 
Searching the lattice instead of the 1-best transcript, however, allows for 
this word to be found. 

Fig. 7.13. Lattice-based speech search. 

A similar Web application in Fig. 7.14 shows the user interface for 
searching a lattice index. Note that for the same audio file (or call) and the 
same search term “chapter”, the results of the query show six hits com-
pared to the four hits in the text index in Fig. 7.12. In this particular case, 
the manual transcript does indeed contain these six occurrences of the 
word “chapter.” The search terms were found in audio segments, which is 
why the time of the hit is a time range. The information in brackets is the 
expected count and can exceed 1.0 if the search term occurs more than 
once in the audio segment. The time range is reflected in the timeline 
where the thin tick marks have been replaced with colored segments. The 
colors of the segments correspond to the colors of the hits in the list. The 
darker the color, the higher the count and the lighter the color, the lower 
the count. Finally, the search can be refined by altering the threshold using 
the “Better Hits” and “More Hits” buttons. In this example, the threshold is 
set to 0.2 as can be seen under the timeline. If the user clicks on the “Better 
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Hits” button, the threshold is increased so that only more reliable matches 
are shown. If the “More Hits” button is used, the threshold is decreased so 
m

terface allows the user to more easily find what 
and vis-
e 1-best 

ser Interface for lattice search. 

ore hits are shown although the hits may not be as reliable (i.e. they may 
include false positives). The lattice index only returns hits where each hit 
has a count above the threshold. 

The lattice search user in
the user wants and has additional controls (threshold adjustments) 
ual feedback (colored segments/hits) that are not possible with th
text search user interface. 

Fig. 7.14. U

7.7.2 Query by Example 

The overwhelming majority of Web queries are textual. With the fast 
development of multimedia applications, not only has the demand 
outgrown the capabilites of textual queries, but also manual annotation is 
no longer feasible. Query based on acoustic characteristics is one 
alternative to text based retrieval. For example, to retrieve audio clips 
based on text, one has to know exactly how this clip is labelled. But there 
are many cases where users know only what the content (speakers, music, 
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or songs) sounds like but not the semantics with which it has been 
identified previously. Therefore, retrieval by audio example is an 
alte

st segment, which is the anchorperson speech, as an example 
to find all similar segments within the same program. We set the sensitiv-
ity to 0. same an-
chorperson.  

 

Fig. 7.15. Audio query by example. 

rnative to conventional text based retrieval. The user can simply 
provide a sample audio stream and ask to retrieve the audio segments that 
possess similar acoustic properties.  

In this section, we show a simple example of audio query by example 
[Liu00]. Figure 7.15 shows the user interface. The audio data is first 
segmented such that each segment contains one speaker. Each segment is 
then fitted by a GMM and then a distance matrix is computed to measure 
the difference between any pair of audio segments. In the example shown, 
we use the fir

55 and find 14 segments, all of which are actually the 

7.8 Conclusion 

This chapter reviewed the recent progress of audio content processing. 
Audio content indexing and retrieval plays an important role in the field of 
multimedia information retrieval. Here, we outline several possible future 
directions in this field to conclude this chapter. First, it remains a challenge 
to find an application independent approach in unrestricted domains. Au-
dio content analysis in specific domains has been intensively studied, and 
researchers have found feasible solutions to most of the problems. Al-
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though different applications share many low-level audio processing tech-
nologies, there is not a general framework that universally fits most appli-
cations. We believe that this topic deserves more research effort, since the 
range of applications is growing rapidly with more and more audio re-
trieval systems in various domains being developed. Second, personaliza-
tion demands more attention in future audio retrieval systems. Most of the 
currently available audio retrieval systems ignore the individual character-
istics of end users. Personalized profiles for each user, which log the his-
tory of user queries and activities, user preferences, etc. are useful for the 
audio retrieval system to generate better query results tuned for a particular 
user. Third, commercialization is possible with the current state of audio 
analysis capability. Because of the research effort invested in recent years, 
audio retrieval systems in certain fields achieve acceptable performance, 
and they provide substantial benefit for users to find audio content fast and 
easily. Computational complexity of audio indexing and query continues to 
be a bottleneck. More efficient technologies are indispensable to increase 

ty and reduce infrastructure cost for commercial systems.  
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8 Text Processing 

8.1 Introduction 

Text provides crucial cues for understanding content. For example, the 
closed captions in broadcast television programs and subtitles in DVD 
movies facilitate video consumption for viewers. When a transcript is not 
available for certain content, automatic speech recognition can be used to 
extract linguistic information. Text information is much more concise than 
corresponding audio or video. The reason is that we need language knowl-
edge to understand text, and the knowledge itself does not need to be em-
bedded in the text data. For example, we only need five characters to ex-
press a “plane,” but to show a video clip of plane takes millions of bytes. 
Text streams contain very rich semantic information. How to effectively 
extract information from text is an important component in video content 
analysis. 

Text processing has been studied in different fields for many years. 
Computational linguistics and natural language processing [Johnston07] 
are two areas that have produced many text processing techniques. Main 
tasks in these areas include parser design, tagger design, information ex-
traction, named entity recognition, language modeling, story summariza-
tion, topic segmentation, data mining, machine translation, speech recogni-
tion, spoken dialogue system, etc. Readers may find additional information 
in books devoted to text processing [Allen95, Jurafsky00, Manning00] and 
information retrieval [Baeza99]. In this chapter, we focus on the text proc-
essing techniques that are relevant to text document retrieval. Recently, 
these classical text retrieval techniques were applied to multimedia content 
query [Feng03]. 

Text document retrieval has been extensively studied by the Text RE-
trieval Conference (TREC) conference [TREC07], co-sponsored by the 
National Institute of Standards and Technology (NIST) and US Depart-
ment of Defense. TREC supports research within the information retrieval 
community by providing the infrastructure necessary for large-scale 
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evaluation of text retrieval methodologies. Topic Detection and Tracking 
(TDT) [Wayne00] is an integral part of the DARPA Translingual Informa-
tion Detection, Extraction, and Summarization (TIDES) program. The goal 
of the TIDES program is to enable English-speaking users to access, corre-
late, and interpret multilingual sources of real-time information and to 
share the essence of this information with collaborators. 

In this chapter, we will introduce some fundamentals in text processing 
that are relevant to content analysis, information extraction, and informa-
tion retrieval. Specifically, we will discuss part of speech tagging, named 
entity extraction, text capitalization, stemming, term weighting, and docu-
ment ranking. We will also present a few methods for story segmentation 
and text summarization. 

8.2 Story Segmentation 

Broadcast news typically contains a number of unrelated stories. The term 
story segmentation describes segmenting an input program into topically 
cohesive stories. Story segmentation can be performed using audio, visual, 
and textual information, combined together. In this section, we focus on 
text based story segmentation approaches. 

The US government initiated Topic Detection and Tracking (TDT) re-
search in 1996 [Wayne00], when the Defense Advanced Research Projects 
Agency (DARPA) realized that it needed technology to determine the 
topical structure of news stream without human intervention. The TDT 
project began in 1997 with a pilot study that included Carnegie Mellon 
University, the University of Massachusetts, and Dragon Systems. Since 
then, the project has continued to the present year with annual technology 
evaluation cycles. Each cycle begins with a statement of the year's evalua-
tion criterion in the evaluation plan, which is followed by a period of re-
search, an evaluation, and finally a workshop to discuss the findings and 
research. 

This section mainly discusses four different approaches for story seg-
mentation: cue phrases, cosine similarity, dynamic programming, and topic 
classification.  

8.2.1 Cue Phrases 

In certain applications, a set of words or phrases can often act as cues, in-
dicating the presence of a nearby story boundary. These words/phrases are 
referred to as cue phrases. In this section, we use broadcast news programs 
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as an example to show how cue phrases can be used to detect story 
boundaries.  

Given that broadcast news is created for a large audience, and is aired 
within a limited amount of time, the content is well structured, concise, 
comprehensive, and easy to follow. Patterns are observed in typical news 
programs, e.g. introduction of a new story by the anchorperson, followed 
with detailed coverage from the reporters and interviewees. Anchorpersons 
normally use cue phrases to start the program, for example, “Good eve-
ning,” to pass to reporters at the scene after introduction, for example, 
“NBC's John Yang at The Pentagon,” and to finish the detailed coverage 
and summarize the story, for example, “Thank you, John.” These cue 
phrases can be easily and robustly detected and they provide reliable indi-
cator for story changes.  

The cue phrases can be classified into more detailed categories. A two 
category classification can be (1) begin-cue-phrases in the beginning of 
news, for example, “Good evening” and (2) miscellaneous cue-phrases in 
the middle of the programs, such as “Weather forecast is next,” “when we 
come back,” etc. Merlino et al. [Merlino97] proposed a finer classification 
for cue phrases. They are  

1. I’m ‹person›. For example, “I’m John.” 
2. Introductory phrases. For example, “Hello and welcome,” “Thanks 

for watching,” “We are back here with NBC News in-depth.” 
3. Weather related cue phrases. For example, “forecast,” “high 

pressure,” “hurricane.” 
4. Anchor to reporter phrases. For example, “NBC’s Lisa Jones,” “Our 

story tonight from NBC's Bob Smith.”  
5. Reporter to Anchor phrases. For example, “Tom Costello, NBC 

News, Washington.” 
6. Story preview. For example, “When we continue after a break here.” 

With natural language understanding tools, these cue phrases can be de-
tected by regular expression matching or more data driven approaches, in-
cluding hidden Markov models. 

8.2.2 Cosine Similarity 

In text processing, a document can be represented as a vector in a space, 
where each dimension corresponds to a distinct term in a predefined vo-
cabulary. The coefficients of the vector for a given document are the term 
frequencies within that dimension. The resulting vectors are extremely 
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sparse and typically high frequency words (stop words) are ignored. Such 
a representation of text document is called a vector space model.    

The cosine coefficient is a document similarity metric which has been 

investigated extensively. The cosine of the angle between two vectors A  

and B , each representing a document, is an indication of vector similarity 
and is equal to the dot product of the vectors normalized by the product of 
the vector lengths. 

||||||||
)cos(

BA

BA

 

(8.1) 

Figure 8.1 plots the cosine distance computed for a document at each 
sentence. There are 198 sentences in this document, and there are six sto-
ries. The boundaries of the stories are marked by vertical dotted line. For 
each sentence, we compute the cosine distance between two neighboring 
blocks of sentences: the preceding 20 sentences and the following 20 sen-
tences. It is obvious that the cosine distance achieves local minima near the 
story boundaries. With a simple threshold method, story boundaries can be 
detected.  

Fig. 8.1. Cosine distance of neighboring text blocks for a news program. 
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8.2.3 Dynamic Programming 

Topic segmentation may be based on multimodal cues, but here we present 
a method that consists of the following steps and is entirely based on the 
closed captioned text or automatic speech recognition of the audio compo-
nent of the video programs: 

Input: a set of sentences corresponding to the program dialog transcrip-
tion for a program unit between commercial breaks, typically from the 
processed closed caption. For non-commercial content, the entire program 
text may be used, with slightly lower accuracy. 

1. Use a part-of-speech tagger to mark all nouns. 
2. Stem all nouns to their roots. 
3. Define a symmetric matrix S such the element S(i, j) =1 if sentences i 

and j have at least one noun in common, otherwise zero. Figure 8.2 shows 
the S matrix for a half hour news program with 198 sentences, where only 
pairs of sentences that are less than 100 sentences away are considered. 
The real story boundaries are marked by dashed lines. There are six sto-
ries: S1 to S6 in this program, and it is obvious that the S matrix is dense 
within each story block.  

4. Define a density D(i, j) between sentences i and j: 

r

j

im

j

mn

ij

nmS
jiD

)1(

),(
),(

1

1  

(8.2) 

where the exponent r is obtained by cross validation. The numerator is a 
count of the number of 1’s in the upper triangular matrix between sen-
tences i and j and therefore bounded by elements (i, i+1), (i, j) and (j–1, j). 

5. Find the set of sentences (i1, j1), (i2, j2), …, (ik, jk), …, (iK, jK) with jk > 
ik and jk+1 = ik+1, such that the following is maximized, 
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J can be found by dynamic programming and basically finds the K sets 
of sentence intervals (ik, jk) such that the sum of the densities over these K 
intervals is maximized. 
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Fig. 8.2. Sentence similarity matrix S for a news program. 

The algorithm has been developed and tested using the LCD TDT-3 
dataset which includes closed caption data from CNN, NBC, ABC, and 
PRI and includes topic boundary indications. 

This process assumes that a good algorithm exists to determine sentence 
boundaries and this is true for the closed captions in the news programs 
which typically include end of sentence punctuations. The dynamic pro-
gramming algorithm is embedded with a constraint so that topic segments 
are at least three sentences long. 

This procedure is similar to [Fragkou04] except they used an additional 
penalty term if the segment lengths are too long or too short. The attributes 
“too long” or “too short” are based on experimental analysis of the average 
length and standard deviations of segment lengths. In addition, they used 
all words, while this method used nouns only. 

The algorithm works better if the program segments are as short as pos-
sible. Hence, it is desirable that the segments be the sentences between 
commercial boundaries. While it is true that sometimes coherent segments 
of text cross commercial boundaries, the text before the commercial is 
typically a transitional phrase such as “Coming up next…” and this can be 
readily detected and removed from the optimization using context-free 
grammars or other natural language processing techniques. 
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8.2.4 Topic Classification 

BBN Technologies built a topic classification component, called OnTopic, 
which is based on probabilistic HMM [Makhoul00]. OnTopic is trained to 
classify thousands of topics. For text based story segmentation, OnTopic 
with 5500 topic models is applied to overlapping data windows of 200 
words with a step size of four words between adjacent windows. For a data 
window, the top scoring 100 topics are selected to train a Gaussian model 
to obtain the likelihood values. Then, only those topics whose log likeli-
hood values are more than twice the standard deviation from the mean 
score are kept as the pruned topic lists for the data window. The next task 
is to locate the story boundaries based on the pruned topic lists of all data 
windows. There are two steps involved which first roughly locate the 
boundaries and then precisely pinpoint the boundaries. 

A topic window is defined as the aggregate of 50 consecutive pruned 
topic lists, and topic persistence is the number of occurrences of each topic 
label found in a topic window. Then the maximum-persistence scores 
within each topic window are computed. Within the same story, normally 
the maximum-persistence value is 50. At the boundaries of the story, the 
maximum value decreases. A threshold of 90% of the maximum is used to 
roughly locate the story boundaries. To precisely pinpoint the story 
boundaries, topic support words are utilized. The topic support words are 
those words in a topic window that contribute to the score of one of the 
pruned topics. They are easily separable into two groups whenever they 
span a story boundary – one group supports the topics identified in the pre-
ceding story, and the other group supports the topics in the succeeding 
story.  

8.3 Named Entity Extraction 

Named entity extraction (NEE), also known as named entity recognition, 
means extracting atomic elements with associated categories, such as per-
son names, locations, phone numbers, identification numbers, etc. For ex-
ample, in sentence “Tom Smith’s phone number is 234-456-789,” there are 
two named entities: “Tom Smith” is a person name, and “234-456-789” is 
a phone number. It is a basic component for natural language processing 
applications, such as information retrieval, question answering, and docu-
ment summarization, etc. [Kobayashi03, Kubala98].  

The definition of the categories is application dependent. The set of 
named entities can be partitioned into two sets – application-independent 
and application-dependent. Examples of application-independent entities 
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include “phone numbers,” “dates,” “currency,” “credit/calling card num-
bers.” These are found in many different applications. Besides application-
independent entities, an application may also need some entities specific to 
the application, for example names of products and services.  

Generally speaking there are two approaches for named entity extrac-
tion: rule based and data driven approaches. Rule based approaches rely on 
linguistic rules, while data driven methods rely on statistical pattern recog-
nition methods including hidden Markov models (HMM), maximum en-
tropy (ME), and support vector machines (SVM).  In this section, we will 
show some examples in both categories. 

8.3.1 Rule Based NEE 

In rule-based approaches, a grammar in Backus Naur Form (BNF) may be 
created manually for each named entity [Gupta06]. The creation of a new 
named entity may involve reusing or extending one of the grammars avail-
able in a library of application-independent named entities, or it may in-
volve writing a new grammar from scratch. A library of generic grammars 
is available for such items as phone numbers, and the library may be aug-
mented with application-specific grammars to deal with account number 
formats, for example. 

As an example, a fragment of a “date” grammar is shown in Fig. 8.3. 
Note that the terminals of the BNF are of the form X:Y where 

}'{},{' TAGSVYVX . }/,{ iii ttTAGS which is 
the set of start and end symbols representing the entity types, and V' is the 
vocabulary.  

|sec:sec|:
|:|:

/::
/::

ondondfirstfirstDAY

feburaryfeburaryjanuaryjanuaryMONTH
dayDAYday

monthMONTHmonth
DATE

 

Fig. 8.3. A simple date grammar. 

These grammars are typically regular expressions written in a grammar 
rule notation. They are compiled into finite-state acceptors whose arcs are 
labeled with the terminals of the grammars. The two components of the arc 
labels are then interpreted as the input and the output symbols leading to a 
finite-state transducer representation. The result of compilation of the pre-
vious grammar fragment is shown in Fig. 8.4. 



8.3 Named Entity Extraction      185 

Fig. 8.4. FST representation of the “date” grammar fragment. 

Each entity grammar Gi is compiled into a finite state transducer (FST) 
Fi and the final entity extraction model F is a transducer resulting from a 
union of all the FSTs: ii FF . It is often the case that the same sub-
string might represent more than one entity type. An example is a sequence 
of 10 digits which could be a phone number or an account number. Al-
though, for the majority of named entities of interest, the grammars can 
specify the context in which the BNF rules can apply, it is clear that this 
approach is limited and is unable to deal with other ambiguities that cannot 
be resolved from a small set of immediate contexts. 

The kinds of entities we are interested in can be extracted using the pro-
cedure discussed previously. Writing accurate grammars with high preci-
sion and high recall is a tedious and time consuming activity. In practice, 
grammars with higher precision are preferred over those with higher recall. 
If higher recall is needed for an application, data-driven named entity ex-
traction (NEE) can be used. 

8.3.2 Data Driven NEE 

Data driven NEE relies on two components: feature extraction and the 
classification method. Typical features include: 

 Words and their lemmas in a window surrounding the current word; 
 The part-of-speech tags of the current and surrounding words; 
 The prefixes and suffixes of the current and the surrounding words; 
 N-grams; 
 Capitalization information. 

Gazetteer information, for example, lists of cities, countries, proper 
names, organizations, etc., and classification results from different ap-
proach are also useful features [Kobayashi03]. 
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Maximum entropy methods and support vector machines make deci-
sions for each feature vector, within which the context information has 
been encoded. The MaxEnt classifier computes the posterior class prob-
ability of an example by evaluating the normalized product of the weights 
active for the particular example. The model weights are trained using the 
improved iterative scaling algorithm [Borthwick99]. The support vector 
machine is designed for binary classification tasks, and how to efficiently 
extend it to multiple classes (for example, the NEE case) is an important 
algorithm design consideration. Isozaki and Kazawa [Isozaki02] adopted 
the “one versus all others” approach, where each classifier is trained to dis-
tinguish members of a class from no-members. For situations where two or 

sample to the SVM boundaries are used to determine the best class. Given 
that the feature dimensionality is normally huge in the text domain, feature 
selection is useful for further improving the efficiency. Florian et al. 
[Florian03] explored how to combine multiple data driven classifiers to 
further improve the NEE performance.  

8.3.3 NEE Tools 

There are many existing named entity extraction software tools available 
from public domain. In this section, we give a brief overview of one of 
them, GATE – General Architecture for Text Engineering [GATE07]. 
GATE is one of the most widely-used nature language processing systems, 
and is a very comprehensive infrastructure for language processing soft-
ware development, implemented in Java. Key features of GATE include 
(1) Component-based development reduces the system’s integration over-
head in collaborative research; (2) Automatic performance measurement of 
language engineering components promotes quantitative comparative 
evaluation; (3) Distinction between low-level tasks such as data storage, 
data visualization, discovery and loading of components and the high-level 
language processing tasks; (4) Clean separation between data structures 
and algorithms that process human language; (5) Consistent use of stan-
dard mechanisms for components to communicate data about language, 
and use of open standards such as Unicode and XML; (6) Insulation from 
idiosyncratic data formats (GATE performs automatic format conversion 
and enables uniform access to linguistic data); and (7) Provision of a base-
line set of LE components that can be extended and/or replaced by users as 
required. 

more classifiers each classifies a sample as a member, the distances of the 
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Within the GATE distribution, named entity extraction is included in the 
information extracting system – ANNIE (A Nearly-New Information Ex-
traction System). ANNIE includes the following components. 

1. Tokenizer, which splits the text into very simple tokens such as 
numbers, punctuation and words of different types.  

2. Gazetteer, which contains a set of plain text lists. Each list represents 
a set of names, such as names of cities, organizations, days of the 
week, etc. 

3. Sentence splitter, which is a cascade of finite-state transducers which 
segments text into sentences. 

4. Part-of-speech tagger, which produces a part-of-speech tag as an 
annotation on each word or symbol. 

5. Semantic tagger, which contains rules that act on annotations 
assigned in earlier phase, in order to produce outputs of annotated 
entities. 

6. Orthographic coreference, which adds identity relations between 
named entities found by the semantic tagger, in order to perform 
coreference. 

7. Pronominal coreference, which perfoms anaphora resolution using 
the JAPE grammar formalism. JAPE is a Java annotation patterns 
engine.                                                                                                                      

8.4 Part-of-Speech Tagging 

Part-of-speech (POS) tagging means associating words in text to a particu-
lar part of speech, such as nouns, verbs, adjectives, adverbs, pronouns, 
prepositions, conjunctions, and interjections. For example, given the sen-
tence “The kid is smart,” the POS tagger would output “The/DT kid/NN 
is/VB smart/JJ.” (See Table 8.1 for definitions of the acronyms.) Tagging 
text with parts-of-speech is extremely useful for more complicated NLP 
tasks such as parsing and machine translation. 

A big challenge in POS tagging is to solve the tag ambiguities.  For ex-
ample, the word “book” can be a noun in the sentence “I have a book”, or 

which makes POS tagging difficult. In spite of the challenges, state-of-the-
art POS taggers can achieve accuracy as high as 96%. 

The actual set of tags used in POS taggers is more complex than the 
general eight types of POS described in the previous paragraph. There are 
three commonly used training datasets or tagsets: the Brown tagset, the 

unambiguous, but many of the most commonly used words are ambiguous, 
a verb in the sentence “I will book a hotel.” Most English words are 
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Penn Treebank tagset, and the C5 tagset. The Brown corpus was created at 
Brown University in the 1960s, and it collected one million word of sam-
ples from 500 written texts of different genres. The Brown tagset used by 
Brown corpus defined 87 tags. The Penn Treebank tagset is smaller, with 
45 tags, while the C5 tagset defines 61 tags. Table 8.1 shows the Penn 
Treebank tagset. 

Table 8.1. Tagset of Penn Treebank. 

Tag Description Tag Description 
CC Coordinating conjunction SYM Symbol 
CD Cardinal number TO To 
DT Determiner UH Interjection 
EX Existential there VB Verb, base form 
FW Foreign word VBD Verb, past form 
IN Preposition or subordinating 

conjunction 
VBG 

JJ Adjective VBN Verb, past participle 
JJR Adjective, comparative VBP Verb, non-3rd person singular 

present 
JJS Adjective, superlative VBZ Verb, 3rd person singular present 
LS List item marker WDT Wh-determiner 
MD Modal WP Wh-pronoun 
NN Noun, singular or mass WP$ Possessive wh-pronoun 
NNS Noun, plural WRB Wh-adverb 
NNP Proper noun, singular $ Dollar sign 
NNPS Proper noun, plural # Pound sign 
PDT Predeterminer “ Left quote 
POS Possessive ending ” Right quote 
PRP Personal pronoun ( Left parenthesis 
PRP$ Possessive pronoun ) Right parenthesis 
RB Adverb , Comma 
RBR Adverb, comparative . Sentence-final punc 
RBS Adverb, superlative : Mid-sentence punc 
RP Particle   

Generally speaking, there are two classes of POS tagger: rule-based tag-
gers and stochastic taggers. Rule based taggers normally contain two steps 
where the first step assigns all possible POS taggers to each word based on 
a dictionary, and the second step removes the wrong tags based on a large 
set of disambiguation rules. EngCG [Voutilainen99] is a sample rule-based 
tagger, which has 3744 constraints and utilizes probabilistic constraints 
and other syntactic information.  

Stochastic taggers compute the probability of a given word in a context 
for certain tag. We use the hidden Markov model (HMM) based tagger as 

participle 
Verb, gerund or present 
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an example in this category. Given the observation of a string of words 
{w1, w2, … ,wn}, we need to find the sequence of tags  that 
maximize the a posteriori probability . 

For simplicity purposes, we denote  by . Similarly, 

 is denoted by , and {w1, w2, … ,wn} by . Then, 
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By Bayes’ rule, this can be expressed as 

)()|(maxarg
)(

)()|(maxargˆ
111

1

111
1

11

nnn

t
n

nnn

t

n tPtwP
wP

tPtwP
t

nn

 

Here  is the likelihood of string given tag sequence , and 
 is the prior probability of tag sequence . The HMM tagger 

greatly reduces the optimization problem by two assumptions: (1) the like-
lihood of each word wi only depends on its tag ti; and (2) the probability of 
current tag ti only depends on its previous tag ti-1. With these two con-
strains, the equation can be written as 
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As shown in this equation, the parameters of the HMM are (1) the initial 
tag probabilities P(t1), (2) the tag transition probabilities P(ti | t i-1), and (3) 
the word likelihoods P(wi | ti). These set of parameters can be trained using 
a large corpus of labeled data. 

Inspired by both the rule-based and stochastic based taggers, Brill 
[Brill93] proposed a transformation-based tagger, which is also called the 
Brill tagger. The Brill tagger relies on a set of tag rules that are automati-
cally trained from a corpus. It has three stages. In the first stage, every 
word is labeled with its most likely tag. In the second stage, it checks all 
possible transformations, and selects the one that leads to the most im-
provement. In the third stage, data is re-tagged based on this rule.  

8.5 Capitalization 

Correct text capitalization is an important factor in determining the quality 
of the transcripts obtained from closed captioned text (which is usually in 
all upper case) and those generated by automatic speech recognition en-
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gines. Following are two sentences; one is the original closed caption ex-
tracted from broadcast programs, and the other one is the same sentence 
with case information restored. 

- IT'S "THE TONIGHT SHOW" WITH JAY LENO -- FEATURING 
KEVIN EUBANKS AND THE "TONIGHT SHOW" BAND. AND 
I'M JOHN MELENDEZ. 

- It's "The Tonight Show" with Jay Leno -- featuring Kevin Eubanks 
and the "Tonight Show" band. And I'm John Melendez. 

The second form is obviously easier to read and demonstrates repurpos-
ing of closed caption data for applications such as creating printed tran-
scripts. From a syntactic perspective, capitalization is usually used to indi-
cate the beginning of a new sentence.  This is probably the most common 
usage, but it carries no semantic content.  The other uses of capitalization 
are meant to emphasize the sentient nature of an entity or being the spe-
cific work of a sentient being or a specifically named natural location or 
phenomenon.  In fact, it could be considered an insult in some contexts to 
leave a word non-capitalized. That's because capitalization may also indi-
cate a certain amount of dignity or honor. Because capitalization has such 
semantic, pragmatic, and sociolinguistic implications, it is helpful to read 
documents that have correct capitalization. 

Closed caption (CC) documents and Telephone Typed Dictation (TTD) 
are made in a hurry and mostly lack correct capitalization and punctuation.  
Automatic Speech Recognition (ASR) likewise needs all of its processing 
directed towards determining the correct word to use for a given sound 
pattern. Capitalization is an afterthought when dealing with ASR. 

Several researchers investigated the text capitalization problem.  Chelba 
and Acero proposed a maximum entropy based capitalizer in [Chelba04], 
and Brown and Coden proposed an N-gram based capitalization method in 
[Brown01]. To illustrate some of the issues involved in more detail, we 
will present the case restoration module of MIRACLE system (Multimedia 
Information Retrieval by Content) [Gibbon06, Liu06] which is a combina-
tion of rule-based capitalization and an N-gram language model generated 
using a large corpus of AP newswire data collected back in the 1990s. 
Keeping this data up-to-date requires timely discovery and mining of re-
cently published documents to learn new information and incorporate it 
into the models. One promising approach is to crawl through Website con-
tent using RSS (Rich Site Summary) feeds, and automatically update the 
case restoration module based on collected Web data. 
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8.5.1 Linguistic Processing Architecture 

Figure 8.5 shows the system architecture. RSS feeds are lightweight XML 
files that are regularly maintained by the Websites for sharing new content. 
The Web document collector periodically queries a set of selected RSS 
feeds and downloads the news stories following the embedded links. Up-
dated RSS feeds are stored in a Database to track their changes, such that 
only new content will be fetched. The news stories are stored in a standard 
database for post processing. The textual information extractor module lo-
cates the useful news story segments buried in the complicated HTML 
pages which normally contain a variety of other information, including ad-
vertisements. The plain text news stories are saved in the Web story data-
base.  

 
Fig. 8.5. System architecture of the case restoration module. 

 
The capitalization model maintains a set of N-grams based on a collec-

tion of recent stories, and the new N-grams are merged with the existing 
ones in the case restoration module. 

8.5.2 Web Document Collection 

An explained in Chap. 2, an RSS file is an XML dialect for Web syndica-
tion used by news Websites and Weblogs [RSS07]. Its main purpose is to 
allow Internet users to subscribe to certain Websites, whose content is 
regularly updated. Each RSS feed contains a set of items embedded with 
associated URLs and related metadata.  

This system utilizes the RSS feeds of the major broadcast and media 
publishing companies, for example, ABC, BBC, CBS, Fox, CNN, 
MSNBC, The New York Times, etc.  Each company provides dozens of 
RSS feeds which focus on different news categories, including world 
news, domestic news, politics, science, health, finance, etc. The wide range 
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of the content at these Websites was chosen to cover the same content do-
main that the MIRACLE system is processing. Currently, 113 RSS feeds 
from the above Websites are chosen, and the Web document collector 
module fetches each of them every two hours to track new items that were 
recently published. Given that the size of the RSS feeds is reasonably 
small, all downloaded RSS feeds are saved in the RSS database, and the 
key for each entry is the RSS feed URL combined with the fetch time.  

As we indicated, each RSS feed contains a group of items, which spec-
ify the story URLs as well as some metadata. The Web document collector 

the corresponding news story. The Webpages are saved in the Web docu-
ment database without any processing. Each story is assigned with a key, 
which is actually the URL of the Webpage, such that the system can skip 
the items that exist in the database, and just download the new ones. This 
is especially useful in the case that the same story may appear in more than 
one RSS feed from the same company, for example, a news story may be 
listed in both the domestic RSS feed and the politics RSS feed. The meta-
data provided in the RSS feed for each item as well as the fetching time in-
formation are saved in the database also. 

On average, more than half of the content in the Webpage is not related 
to the embedded news story. This includes dynamic HTML controls, pro-
gramming scripts, HTML tags, advertisements, etc. To extract useful in-
formation, the textual information extractor module employs an HTML 
parser to sift the pure text segments of news stories. To ease the training 
process, each story is further segmented into a set of sentences using a rule 
based sentence parser. The parser relies on punctuation information and a 
set of rules of titles and acronyms, which is primitive yet effective. All 
sentences are saved in the database. Within the database, data collected 
from different months are saved separately, such that only the recent data 
will be used for training the capitalization models. 

8.5.3 Text Capitalization Algorithm 

The current implementation in the MIRACLE system depends on an N-
gram language model trained from an older broadcast news corpus.  The 
N-gram (up to 9-gram) in this model is simply a sequence of lower case 

their values are the target capitalized version of the token. For example, 
Hash(“big apple”) = “Big Apple”. When the capitalizer runs, it looks for 
the longest N-gram in the current position in the text that matches, and 
then capitalizes it as it's capitalized in the N-gram.  The algorithm starts 

module extracts the URL from each item, and downloads the webpage of 

words, also called tokens. These N-grams are stored in a hash table, and 
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from N = 9 words from the current position, and if it doesn't match it will 
fall back to a strategy of looking at only N –1 words from the current posi-
tion, all the way until only the single word at the current position in the 
text is examined to see if it exists capitalized in the N-gram hash.  If it 

The capitalization model training module retrieves all news story sen-
tences of the most recent three months. For training purposes, the first 
word of each sentence is ignored, which is always capitalized. The training 
process contains two major steps. In the first step, each chunk of adjacent 
capitalized terms is identified, and the lower case of the chunk is used as a 
token. For example, token_1 = “big apple.” The length of a token varies 
from a single term to nine terms. At the second step, the entire corpus is 
scanned again to compute the statistics of all possible capitalizations of 
each token. For example, the statistics of token_1 in one training corpus is 
following, 

- Frequency(“big apple”) = 37, 
- Frequency(“big apple” => “big apple”) = 2, 
- Frequency(“big apple” => “Big Apple”) = 35. 

To get rid of possible typos, the system ignores those tokens whose total 
occurrence is less than three times. If a certain type of capitalization is sig-
nificant enough, which means that its frequency is dominant compared to 
all other alternatives (e.g. more than 70% of the token frequency), it is re-
corded as one N-gram. The N-gram created in the above example is 
Hash(“big apple”) = “Big Apple”.  

Now a list of N-grams is built based on the training corpus, and the re-
dundant N-grams need to be removed. For example, if the N-gram list con-
tains the following three tokens: 

- Hash(“tom smith”) = “Tom Smith” 
- Hash(“tom”) = “Tom” 
- Hash(“smith”) = “Smith” 

It is clear that the first N-gram is redundant with respect to the last two N-
grams, and in this case, the first N-gram is removed to reduce the process-
ing complexity. After the set of N-grams is built from the new training 
corpus, they are merged with the existing N-grams. The merging process is 
composed of two steps: First, for each token in the new N-grams, the sys-
tem either updates the existing N-gram if the token exists or adds a new N-
gram if the token is new. Second, the redundancy is removed in the 

current position. 
move 1 to N words ahead once it capitalizes as much as it can from the 
doesn’t, then the word isn't capitalized.  In any case, the algorithm will 
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merged N-grams. The merged N-grams are used by the case restoration 
module for any new content acquired in MIRACLE system. 

8.6 Information Retrieval 

8.6.1 Stemming 

Stemming is the process of reducing derived words to their stem form, 
which need not be identical to the morphological root of the word. It is 
usually sufficient that related words map to the same stem. In English, a 
verb has a number of morphological forms. For example, the non-third-
person-singular (eat), third-person-singular (eats), progressive (eating), 
past participle (eaten). Stemming maps eat, eats, eating, eaten into the 
same stem, eat. 

The Porter stemmer is a widely used method, which automatically re-
moves the suffix based on a set of rules. Details of the method can be 
found in [Porter80]. Here we briefly introduce the method. The algorithm 
first defines consonant (c) as letters other than A, E, I, O, U, or Y preceded 
by a consonant. If a letter is not a consonant, it is a vowel (v). A list of 
consonants of length greater than 0 is denoted by C, and a list of one or 
more vowels is denoted by V. Then, any words can be represented by 
[C](VC){m}[V], where the square brackets denote arbitrary presence of 
their contents, and (VC){m} means VC repeats m times.  

The Porter stemmer defines a set of rules to remove a suffix. These rules 
are in the form of “(condition) S1  S2,” which means if a word ends 
with suffix S1, and the stem before S1 satisfies the condition, S1 is re-
placed by S2. S2 can be null. The algorithm applies five steps of rules se-
quentially to strip complex suffixes for a given word. The first step deals 
with plurals and past participles. A few rules and corresponding examples 
are listed below: 

SSES  SS  caresses  caress 
(m>0) EED  EE agreed  agree 

There are about a dozen rules in the first step, and only one with longest 
matching S1 is obeyed. The next four steps are more straightforward, each 
containing a set of rules. We give one example for each of these steps, 

Step 2: (m>0) ATIONAL  ATE relational  relate 
Step 3: (m>0) ICATE  IC  triplicate  triplic 



8.6 Information Retrieval      195 

Step 4:  (m>1) AL  null  revival  reviv 
Step 5:  (m=1 and not *o) E  null cease  ceas 

Going through these sets of rules for each input word is time consum-
ing. A more efficient implementation is to use a dictionary (e.g. a Hash ta-
ble built on an existing corpus by these rules) to map a known word into its 
stem. Only unknown words have to go through the five steps of rules. 

8.6.2 Term Weighting 

Term frequency is the number of times that each term appears in a docu-
ment and it is a useful feature for text processing. Obviously, simply using 
term frequency to represent a document is not effective, since generally, 
some words appear more often than the other words. For some most com-
mon words, e.g. the, a, at, etc., it is good idea to remove them before fur-
ther text processing. These words are called stop words or noise words. 
Term weighing is necessary to emphasize that more information is brought 
in by less common words.   

TF-IDF (Term Frequency – Inverse Document Frequency) [Salton88] 
weighting is an ad hoc modification to the cosine coefficient calculation 
which weights words according to their usefulness in discriminating 
documents. Words that appear in few documents are more useful than 
words that appear in many documents. This is captured in the equation for 
the inverse document frequency of a word: 

)(
log)(

wdf

N
widf  

(8.4) 

where df(w) is the number of documents in a collection which contain 
word w, and N is the total number of documents in the collection. The re-
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8.6.3 Ranking 

After the retrieval engine finds all relevant results for a query, it needs to 
rank them in a certain order before presenting them to the user. One com-
mon ranking method is based on the creation time of the document. In 

In certain cases, ranking based on time is not the most desirable method 
for a user. While a user performs a search, he/she wants to see the most 
relevant results first. For example, the relevance here can be measured by 
the number of occurrences of the queried terms or the density of the que-
ried terms in the retrieved documents. Here, the density of a term is de-
fined as the ratio of the times that the term occurred to the length (in 
words) of the document. Obviously, the TF-IDF introduced in the previous 
section is an effective measurement of relevance as well. 

For Web document retrieval, a well known ranking method is called 
PageRank invented by Page [Page06], who co-founded Google. Assuming 
there are N documents p1, …, pN, the page rank of document pi, denoted by 
PR(pi), is determined by the following equation, 
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where M(pi) is the set of documents that link to pi, L(pj) is the number of 
outbound links in document pj, and d is a damping factor, which can be set 
around 0.85. Let us use vector R to represent the PageRank vector [PR(p1) 
PR(p2) … PR(pN)]', the previous formula can be written in matrix format,  
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where l(pi, pj) is 0 if document pj has no link to pi, otherwise, a normalized 

constant such that . 1),(
1

N

i
ji ppl

An iterative procedure can be used to determine (or approximate) the 
value of R. The PageRank of each document PR(pi) is set to 1/N at the be-
ginning, and good results are achieved after a few iterations. 

such cases, the user can choose to see the newest document first or browse 
the oldest document first. 
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8.7 Text Summarization 

With the rapid growth of the World Wide Web and computer based infor-
mation systems, information is becoming available on-line at an increasing 
rate. One consequence is the so called information explosion. No one has 
time to read everything, yet we often have to make critical decisions based 
on what we are able to assimilate. The technology of automatic text sum-
marization is a solution to this problem. Text summarization is the process 
of distilling the most important information from a source to produce an 
abridged version for a particular user or task. Text summarization has been 
a research topic since the 1950s, however, it became more active since the 
second half of the 1990s due to the boom of the Internet.  

A summary is a concise restatement of the topic and main ideas of its 
source. Generally speaking, there are three stages in automated text sum-
marization: (1) topic identification, (2) interpretation or topic fusion, and 
(3) summary generation [Mitkov05]. Topic identification is to determine 
the central topic(s) for the input text. Normally, this is through first parsing 
the input text into syntactic and semantic representations, and then analyz-
ing the relations between these representations and various topics to 
choose the most relevant topic(s) discussed in the text. Topic interpretation 
and fusion refers to the process of fusion of identified topics and express-

nal text. This stage requires domain knowledge that may not exist in the 
input text. Summary generation is to create the summary content through 
natural language generation techniques based on the abstract and informa-
tion extracted in the previous two stages. The length of the final summary 
varies from a few paragraphs to a couple of sentences. The extreme cases 
include a list of keywords extracted from the text. 

The TIPSTER Text Program was a Defense Advanced Research Pro-
jects Agency (DARPA) led government effort to advance the state of the 
art in text processing technologies through the cooperation of researchers 
and developers in government, industry and academia [Tipster07]. In its 
efforts to improve document processing efficiency and cost effectiveness 
TIPSTER focused on three underlying technologies.  

- Document Detection: the capability to locate documents containing 
the type of information the user wants from either a text stream or a 
store of documents.  

- Information Extraction: the capability to locate specified information 
within a text.  

- Summarization: the capability to condense the size of a document or 
collection while retaining the key ideas in the material. 

ing the subject using concepts or words that may not occur in the origi-
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The text summarization task in the TIPSTER Text Program provides a 
common platform for all participating research groups to develop novel 
text summarization technologies. Some of the techniques that may be used, 
independently or combined, in building summaries include [Tipster07]: 

- Selecting important paragraphs from a document.  
- Selecting important sentences from a document.  
- Selecting high frequency, meaningful words from a document.  
- Selecting unusual words from a document.  
- Counting repeated word usage to identify important sentences.  
- Using information extraction techniques to identify important 

document entities, e.g. person names, place names, company names, 
organizations, numeric data and temporal data. 

- Using vector techniques to group either documents or paragraphs 
under common concepts.  

- Using retrieval techniques to identify documents that correspond to a 

- Performing some level of modification of the selected sentences or 
paragraphs using natural language or statistical techniques.  

- Using natural language techniques to synthesize new sentences or 
paragraphs.  

- Applying statistical techniques to condense documents or collections 
of content.  

It should be noted that effective summarization is not an easy task and it 
frequently involves semantic analysis and applying world knowledge for 
the clearest presentation. While some research has been done and a few 
trial systems have been developed there is still much, much work to be 
performed before really good summarization systems become available.  

The goal of text summarization can be said to obtain a good summary, 
but it has been thought difficult to evaluate summaries which are the out-
puts of text summarization systems, and we do not have definite standard 
measures to evaluate such systems. Here we introduce two commonly used 
measures: compression ratio (CR) and information retention ratio (RR) 
[Mitkov05]. Assume the original text document is T, and its summariza-
tion is S, then, 

Tininfo

Sininfo
RR

Toflength

Soflength
CR ;  

(8.8)

A perfect summarization system is supposed to keep all information – a 
unitary value of RR, with a minimum length of words – a value of CR 

complex query which would be the desired summary. 
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close to zero.  CR is straightforward to compute, but the evaluation of RR 
may subject to experts’ judgment.  

While summarizing a single text is difficult enough, summarizing a col-
lection of thematically related documents poses several additional chal-
lenges. In order to avoid repetition, one has to identify and locate thematic 

with potential inconsistencies between documents, and, when necessary, to 
arrange events from various sources along a single timeline. For these rea-
sons, multi document summarization is much less developed than its sin-
gle-document counterpart, and multi lingual considerations just further in-
crease the difficulty. 

In this section, we present a simple text summarization method, where a 
set of key words or phrases are extracted as a summary for a document. 

8.7.1 Keyword Extraction 

Often a list of representative key phrases (including keywords) which 
serve as a dense summary for a document can effectively convey the es-
sence of the document to the user. Keywords have been widely used for 
indexing and retrieval of documents in databases, especially large ones. In 
the case of presentation slides, they can also help to rank a slide’s rele-
vance to a query. Johnston et al. [Johnston07] extract a list of key phrases 
with importance scores for each document, and key phrases from a set of 
documents can be merged and ranked based on their scores. 

There are different ways to automatically extract keywords for a text 
document within a corpus. A popular approach is to select keywords that 
frequently occur in one document, but do not frequently occur in the rest 
of the documents based on the term frequency–inverse document fre-
quency (TF-IDF) feature. The difference here is in choosing key phrases 
for a single document, independent of the other documents. Accordingly, 
Johnston et al. adopted a different feature, which is term frequency–
inverse term probability (TF-ITP). The term probability measures the 
probability that a term may appear in a general document, and it is a lan-
guage dependent characteristic. 

Assuming that a term Tk occurs tfk times in a document, and its term 
probability is tpk, the TF-ITP of Tk is defined as, wTk = tfk / tpk. This method 
can be extended to assign an importance score to each phrase. For a phrase 
Fk = {T1 T2 T3 … TN}, which contains a sequence of N terms, assuming it 
appears ffk times in a document, its importance score, ISk, is defined as, 

overlaps. One also has to decide what to include for the remainder, to deal 
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Fig. 8.6. Illustration of key phrase extraction. 

Figure 8.6 illustrates the key phrase extraction approach in [Johns-
ton07]. The first step is to segment the input document into sentences 
based on the punctuations and a set of heuristic rules. For each sentence, 
the system first applies the Porter stemming algorithm [Porter80] to get rid 
of word variations, and then extracts all phrases up to N terms long, where 
N is equal to 4. All phrases that either start or end with noise words are 
removed. Next the system assigns an importance score for each phrase us-
ing estimated term probabilities from a vocabulary based on transcripts of 
600 hours of broadcast news data. If a term in the document is out of the 
vocabulary, and its term frequency is more than 2, then a default term 
probability value tpd will be used. The value of tpd is the minimum term 
probability in the vocabulary. Finally, phrases are sorted based on their 
scores, such that the phrases with high scores are chosen as key phrases. 
Within this step, all phrases that are part of any phrases with higher scores 
are removed. 

An overall list of key phrases for a set of documents is created by merg-
ing the individual key phrase lists and summing the importance scores of 
repeated key phrases. Again, the phrases that are part of any phrase with 
higher overall score are removed. In this system, the top 10 phrases are 
kept in the final overall key phrase list. 

tp
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8.8 Conclusion 

In this chapter, we introduced some fundamentals in text processing that 
are relevant to content analysis, information extraction, and information re-
trieval. Specifically, we introduced part of speech tagging, named entity 
extraction, text capitalization, stemming, term weighting, and document 
ranking. We also presented a few methods for story segmentation and text 
summarization. 
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9 Multimodal Processing 

9.1 Introduction 

With a multimedia document, its semantics are embedded in multiple 
forms that are usually complimentary each other. For example, a live re-
port on TV about a tsunami conveys information that is far beyond what 
we read from the newspaper. Therefore, it is necessary to analyze all types 
of data: image frames, sound tracks, text that can be extracted from image 
frames, and spoken words that can be deciphered from the audio track 
[Wang00]. For some applications, automated techniques that process sin-
gle media, for example, audio or images, may be error-prone, and multi-
modal processing is used to improve the overall system accuracy.  

Multimedia content processing covers a wide area of research activities. 
Multimodal speech recognition utilizes lip motion, ultrasound images, and 
acoustic features to improve the speech recognition accuracy [Chen98]. 
Boreczky [Boreczky98] used HMM framework for video segmentation us-
ing both audio and image features. Saraceno and Leonardi [Saraceno98] 
considered segmenting a video into the following basic scene types: dia-
logs, stories, actions, and generic. This is accomplished by first dividing a 
video into audio and visual shots independently, and then grouping video 
shots so that audio and visual characteristics within each group follow 
some predefined patterns. In [Huang98], a hierarchical segmentation ap-
proach was proposed that can detect scene breaks and shot breaks. The al-
gorithm is based on the observation that a scene change is usually associ-
ated with simultaneous changes of color, motion, and audio characteristics, 
whereas a shot break is only accompanied with visual changes. Lienhart et 
al. [Lienhart99] proposed using different criteria to segment a video into 
scenes with similar audio characteristics such as scenes with similar set-
tings and dialogs. The scheme considers audio features, color features, ori-
entation features, and face information. Fisher et al. [Fisher00] used a non-
parametric approach to learn the joint distribution of the visual and audi-
tory signals. This work extends the notion of multimedia fusion to com-
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plex domains where the statistical relationship between audio and video is 
complex and non-Gaussian. Cutler and Davis [Cutler00] exploited the cor-
relation between audio and video to search for speaking persons, where the 
correlation is learned by a time delayed neural network. Adams et al. [Ad-
ams03] described a method for automatic labeling high-level semantic 
concepts in documentary style videos using audio, text, and visual cues. 
Information from different modalities is combined using support vector 
machines (SVM). Name-It [Satoh99] is a project aimed at automatically 
associating faces detected from video frames and names extracted from 
closed captions for news video. Besides the difficulties in detecting faces 
and names, the association of them also poses a challenge since multiple 
faces may appear in one frame and multiple names may be mentioned in 
one closed caption sentence. 

Li et al [LiD03] used cross-modal association to detect talking heads. 
Cross-modality information analysis extracts multimedia content by identi-
fying and measuring the intrinsic associations between different modali-
ties. In cross-model information retrieval, queries from one modality are 
used to search for the content in another modality using low-level features. 
Li and Kuo [Li03] studied how to employ multiple media cues, including 
audio, visual and face information to analyze video content. The authors 
also presented a video abstraction system based on video semantics and 
video production rules. Snoek and Worring [Snoek05] reviewed the state-
of-the-art of multimodal video indexing. They concluded that multimodal 
analysis is the future, and more attention needs to be given to the following 
factors: (1) content segmentation; (2) modality usage; (3) multimodal inte-
gration; and (4) technique taxonomy.  

Existing multimedia management systems employ various multimedia 
content processing techniques. IBM Research developed a prototype mul-
timedia analysis and retrieval system, called MARVEL [Marvel07]. It con-
sists of two components: a multimedia analysis engine, which applies ma-
chine learning techniques to model semantic concepts in video, and a 
multimedia search engine, which integrates semantics-based searching 
with other search techniques (speech, text, metadata, audio-visual features, 
etc.). The Informedia II [Christel05] digital video library at CMU is an-
other pioneering multimedia database system. Informedia combines speech 
recognition, image understanding and natural language processing tech-
nologies to automatically transcribe, segment, index, and summarize the 
linear video. The current library consists of 1500 hours of video. 
MIRACLE [Gibbon06, Liu06] is an ongoing research project at AT&T 
Labs aimed at creating automated content-based media processing algo-
rithms and systems to collect, organize, index, mine, and repurpose video 
and multimedia information. This video search engine combines existing 
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metadata with content-based information that is automatically extracted 
from the audio and video components. 

This chapter guides the reader through three multimedia processing 
modules: caption/transcript alignment, multimodal story segmentation, and 
major cast detection in video. The reader can easily appreciate the neces-
sity and the superiority of multimedia content processing for real world 
applications. 

9.2 Case Studies 

9.2.1 Closed Caption Alignment 

Closed captioning provides useful information for hearing impaired cus-
tomers and foreigners who watch TV. Since most of the closed caption is 
generated by a stenographer on the fly with the airing of TV programs, it is 
delayed from the actual utterance. The delay can be as long as 10 seconds. 

the synchronized closed caption. Otherwise, the mismatch between the 
heard audio and the shown closed caption may be very annoying. Aligning 
the closed caption with speech is very useful for other applications such as 
topic segmentation. 

In this section, we describe an algorithm for closed caption alignment 
that is adopted in the MIRACLE system [Gibbon06] at AT&T.  Figure 9.1 
illustrates the block diagram of the system. Instead of applying the speech 
recognizer on the entire audio and aligning the recognition results with the 
closed caption globally, the closed caption is segmented into short pieces 
and each of them is aligned independently first. This method basically 
breaks a large, time and memory consuming task into many smaller ones. 
The input closed caption stream is chopped into sentences by a sentence 
segmentation tool that mainly relies on punctuations and a set of heuristic 
rules that cope with acronyms, titles, etc. Each sentence has three proper-
ties: starting time, ending time, and text. Then the system utilizes the 
AT&T Watson Automatic Speech Recognition (ASR) tools to align each 
sentence with the corresponding audio utterance. A grammar based on sen-
tence text, and a clip of audio based on the extended sentence starting and 
ending times are fed in the ASR module. After compiling the grammar, the 
Watson ASR utility determines the actual starting and ending times of the 
corresponding sentence using forced alignment.  

In video indexing and browsing systems, video should be played back with 
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In perfect situations, the list of new timestamps for all sentences is accu-
rate and valid. But normally the naïve alignment is not sufficient due to the 
following two reasons. First, the speech is not clean, and ASR fails to rec-
ognize the corrupted utterances. Second, the caption text does not match 
the real words in speech. This may happen very often due to the typos in 
closed caption, the causal words spoken by the news hosts that are ne-
glected in closed caption, and for on-screen text. All these possibilities hurt 
the robustness of the plain alignment algorithm, and it takes extra effort to 
cope with the detrimental effects in the post processing. 

Fig. 9.1.  Diagram of closed caption alignment method. 

Basically the problem that needs to be solved is to identify the conflicts 
among aligned timestamps of all sentences and reasonably adjust them. 
For example, the aligned starting time of one sentence is earlier than the 
aligned ending time of previous sentence. When no conflicts exist, it does 
not mean the alignment results are accurate, but there is not much to cor-
rect either. When conflicts happen, these indicate mistakes in alignment 
procedure. A reasonable assumption is that longer sentences have lower 
possibility of alignment errors, and the timestamps of long sentences can 
be used to fix the conflicts introduced by neighboring shorter sentences. 
The following section gives more details of the alignment method. 

Alignment algorithm 

Suppose there are N sentences {S1, …, SN}, and the original starting and 
ending times of speaker Si are i

st, and i
end. Since the majority of delays lie 

in the range of 0-8 seconds, it is necessary to extract the audio clip that 
spans [ i

st – 8, i
end] as input for the ASR engine for the current sentence. 

Let us denote the ASR aligned time for speaker Si by Ti
st, and Ti

end. The top 
part of Fig. 9.2 shows a possible naïve alignment results. Each sentence is 
marked by two vertical bars, linked by a horizontal bar. The bold solid bar 
identifies the starting time, and the dashed bar marks the ending time. Due 
to various reasons, the list of aligned timestamps may be invalid. An ex-
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ample is shown in Fig. 9.2, where the first three aligned sentences overlap. 
In this section, the focus is on how to rectify such errors and produce valid 
alignment results.  

Fig. 9.2. Illustration of timestamp adjustment. 

There are two steps in time adjustment. First, if the overlap between ad-
jacent sentences is small, say, less than 0.5 second, then the boundary of 
the shorter sentence is adjusted to the boundary of the longer sentence. 
Second, the adjacent conflicting sentences are grouped into isolated 
chunks, and the timestamps are adjusted within each chunk. For example 
in Fig. 9.2, the overlap between Si and Si+1 is small, so we adjust the ending 
time of Si to the beginning time of Si+1 since Si+1 is longer. On the other 
hand the sentence S1, S2, and S3 have longer overlaps among themselves, 
but do not conflict with others, so they are grouped into a chunk, and ad-
justment of the timestamps is done within the chunk. 

The method of timestamp adjustment within a chunk is shown in 
the bottom part of Fig. 9.2. One simple solution is to modify the original 
closed caption time by the average delays. The average delay  is com-
puted by the following formula. 

N

TT
N

i

i
end

i
end

i
st

i
st

1  

(9.1) 
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Let ti
st = i

st – , and ti
end =  i

end – , we get a valid list of sentences, since 
the original times from closed caption are valid (no overlap). For each 
chunk with conflicts, the algorithm tries to replace as many average de-
layed timestamps ti

st and ti
end by aligned timestamps Ti

st and Ti
end as possi-

ble, so long as the results within the chunk are still valid. This procedure 
starts from the longest sentence within the chunk, and ends at the shortest 
one. For the example shown in Fig. 9.2, the original timestamps are {(t1

st, 
t1

end), (t2
st, t2

end), (t3
st, t3

end)}. For sentence S1, the system tests whether T1
st 

and T1
end conflict with the other sentences. Since it does not, the aligned 

timestamps are used for S1. The new timestamps of the chunk become 
{(T1

st, T1
end), (t2

st, t2
end), (t3

st, t3
end)}. This procedure is then applied for S3 

and S2, and the final timestamps are {(T1
st, T1

end), (t2
st, t2

end), (T3
st, T3

end)}. 
After all chunks with conflict are rectified, a valid alignment result is 
achieved. 

Simulation Results 

The performance of the closed caption alignment algorithm was tested on 
two NBC Nightly News programs on Jan. 18 and 19, 2000, each half an 
hour long. Let us denote these two testing data sets as test1 and test2. The 
first program has 221 sentences, and the second has 203. The real starting 
time and ending time for each sentence are manually labeled as ground 
truth.  

The histograms of the unaligned starting time offset and ending time 
offset of all sentences in test1 and test2 are shown in Fig. 9.3(a) and Fig. 
9.4(b) respectively. The average boundary difference is 2.7 and 2.9 sec-
onds. The alignment results of the two sequences are shown in Figs. 9.4(a) 
and (b). The average boundary difference is reduced to 0.2 second and 0.3 
second.  

  
 (a) (b) 

Fig. 9.3. Histograms of starting time offset and ending time offset between un-
aligned sentences and ground truth for sequences (a) test1 and (b) test2. 
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 (a) (b) 

Fig. 9.4. Histograms of starting time offset and ending time offset between aligned 
sentences and ground truth for sequences (a) test1 and (b) test2. 

9.2.2 Multimodal News Story Segmentation 

Multimodal news story segmentation algorithms intend to provide users 
with the ability to retrieve broadcast news programs in a semantically 
meaningful way at different levels of abstraction. Segmentation algorithms 
are developed, aimed at automatically generating a content hierarchy as il-
lustrated in Fig. 9.5. The lowest level contains the original multimedia data 
(audio, video, and text). The next level separates news from commercials. 
Then the news is segmented into the anchorperson's speech and the speech 
from others (reporters, interviewees, etc.). Based on this information, 
higher levels of semantics can be invoked to further segment the data into 
news stories and news summaries. In turn, each news story can be seg-
mented into an introduction by the anchorperson followed by detailed re-
porting [Huang99]. With story boundaries detected, video search engine is 
able to retrieve relevant and complete video segments for users, and addi-
tional value added services, such as personalized video query or video alert 
services can be easily built.  
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Fig. 9.5. Content hierarchy of broadcast news programs. 

A typical news program consists of both news and commercials. News 
is composed of several headline stories, each of which is usually intro-
duced and summarized by the anchor prior to and following the detailed 
reporting conducted by correspondents and others. Stories do not typically 
span commercial boundaries. With this structure of the data, Huang et al. 
proposed an integrated solution to achieve automatic segmentation of news 
data into the content hierarchy shown in Fig. 9.5 by utilizing cues from dif-
ferent media. 

To separate news from commercials, audio and video information is 
combined. Within each news segment, the anchorperson’s speech is further 
identified based on speaker detection techniques. Each segment of the an-
chor's speech is a hypothesized starting point for a new story. The audio-
based processing results are then integrated with text-based information 
processing to obtain higher levels of semantically meaningful abstraction 
such as stories, story summaries, summary of the day, etc. 

News/Commercials Separation Using Audio 

News and commercials may be separated based on audio measurements. 
For example, nine acoustic features are extracted from audio clips: Non-
Silence Ratio (NSR), Standard Deviation of Zero crossing rate (ZSTD), 
Volume Standard Deviation (VSTD), Volume Dynamic Range (VDR), 
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Volume Undulation (VU), 4 Hz Modulation Energy (4ME), Smooth Pitch 
Ratio (SPR), Non-Pitch Ratio (NPR), and Energy Ratio in Subband 
(ERSB). These features are chosen so that the underlying audio events 
(news vs. commercials) can be reasonably separated in the acoustic feature 
space. Clip level features are computed from frame level features, where 
each frame consists of 512 samples and adjacent frames are overlapped by 
256 samples and each clip is composed of a set of frames [Liu98]. Three 
different classification methods were tested in separating news from com-
mercials: linear classifier, fuzzy classifier, and GMM model based classifi-
cation. Even though the classification is performed on each clip, the pre-
cise boundary between news and commercials (which can be in the middle 
of a clip) is determined by also considering the video processing results: 
the boundary cannot be in the middle of a scene cut. Simulation results 
show that 98% accuracy is achieved on four half hour broadcast news 
[Liu98]. 

Anchor Identification 

We mentioned that the presence of the anchorperson is important for re-
covering the structure of broadcast news. Liu and Huang proposed a 
method to adaptively detect an unspecified anchorperson in [Liu00]. As il-
lustrated in Fig. 9.6, there are two main parts in this scheme. One is visual 
based detection (shown at the top) and the other is integrated audio/visual 
based detection. The former serves as a mechanism for initial on-line train-
ing data collection where possible anchor video frames are identified by 
assuming that the personal appearance (excluding the background) of the 
anchor remains constant within the same program. 

Two different methods of visual based detection are described in this 
diagram. One is along the right column where audio cues are first ex-
ploited that identify the theme music segment of the given news program. 
From that, an anchor frame can be reliably located, from which a feature 
block is extracted to build an on-line visual model for the anchor. Figure 
9.6 illustrates the feature blocks for two anchor frames. From this figure, it 
is obvious that the feature blocks capture both the style and the color of the 
clothes and they are independent of the image background as well as the 
location of the anchor. By properly scaling the features extracted from 
such blocks, the online anchor visual model built from such features are 
invariant to location, size, scale, and background. The model is used to 
identify all other anchor frames by a matching operation.  

 The other method for visual based anchor detection is used when there 
are no acoustic cues such as theme music present so that no image of the 
anchor can be reliably identified to build an online visual model. Face de-
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tection is applied and then feature blocks are identified in a similar fashion 
for every detected human face. Once invariant features are extracted from 
all of the feature blocks, dissimilarity measures are computed among all 
possible pair of detected persons. An agglomerative hierarchical clustering 
is applied to group faces into clusters that possess similar features (which 
indicate the same cloth with similar colors). Given the nature of the an-
chor's function, it is clear that the largest cluster with the most scattered 
appearance time corresponds to the anchor class. The use of both of the 
above described methods enables adaptive anchor detection in the visual 
domain. 

Fig. 9.6. Diagram of adaptive anchor detection algorithm. 

Using only visual based anchor detection is not adequate because there 
are situations where the anchor speech is present but the anchor does not 
appear. To precisely identify all anchor segments, it is necessary to recover 
these segments as well. This is achieved by incorporating audio based an-
chor detection. The visually detected anchor keyframes from the video 
stream identify the locations of the anchor speech in the audio stream. 
Acoustic data at these locations can be gathered as the training data to 
build an online speaker model for the anchor, which can then be applied, 
together with the visual detection results, to extract all the segments from 
the given video where the anchor is present. 
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Simulation results show that the adaptive anchor detection method 
achieves similar performance to methods that use an offline speaker 
model, yet it is obvious that the adaptive methods have the full flexibility 
of detecting arbitrary anchors while the off-line approach does not. 

News Story Extraction 

Text-based discourse segmentation involves tokenization (the division 
of the input text into individual lexical units), grouping of processing units 
(granularity), similarity determination (lexical similarity between two 
blocks of text), and boundary identification (detection of significant lexical 
difference based on similarity scores). Both similarity criteria and group-
ing criteria affect the performance and the precision in discourse segmen-
tation. Most work in the literature uses windows of pre-defined, fixed size 
for the grouping. The dilemma is that too small a window size will make 
similarity comparison less effective and that too large a window size can 
dramatically reduce the accuracy of identified boundaries. Huang et al. 
[Huang99] proposed a grouping criterion based on audio cues. Since an-
chor-based segmentation has grouped the text input into blocks, in effect, 
(1) adaptive granularity can be achieved that is directly related to the con-
tent, (2) the hypothesized boundaries are more natural than those obtained 
using a fixed window, (3) blocks formed in this way not only contain 
enough information for similarity comparison but also have natural breaks 
of chains of repeated words if true boundaries are present, (4) the original 
task of discourse segmentation is achieved by boundary verification, and 
(5) once a boundary is verified, its location is precise. This grouping 
scheme of integrating audio based analysis provides an excellent starting 
point for the similarity analysis and boundary detection. 

For news content, we may organize blocks of text into four classes: 
news stories, story introduction, augmented news stories, and news sum-
mary of the day. The input data for text analysis is two sets of blocks of 
text: T1 = {T1

1 , …, T1
i, …, T1

m} where each T1
k, 1  k  m, begins with the 

anchor person’s speech; and T2 = {T2
1 , …, T2

j, …, T2
n} where each T2

k, 1  
k  n, contains only the anchor's speech. The blocks in both sets are all 
time stamped so that . To find story boundaries, the similarity 
sim() between every pair (Tb1, Tb2) of adjacent blocks is computed by 

kk TT 12

w bww bw

w bwbw
bb ff

ff
TTsim 2
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2
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21 ),(  

(9.2)
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Here, w enumerates all the token words in each text block; fw,bi is the fre-
quency of word w in block bi, i = 1, 2; and 0  sim()  1. With this ap-
proach, blocks that have a higher frequency of identical words are defined 
as being more similar. A threshold is experimentally set up to determine 
the story boundaries. After stories are segmented, set T2 and the stories are 
taken as input to further extract other classes. For each story, the algorithm 
extracts its introduction by finding a T2

k that has the highest similarity to 
that story (T2

k does not necessarily consist of contiguous segments). An 
augmented story is formed by merging each story with its introduction. 
The news summary of the day is extracted with the criterion that it has to 
provide the minimum coverage for all the stories reported on that day. 
Therefore, it is a set of T2

ks that together covers all the stories of the day 
without overlap (i.e., each story has to be introduced, but only once). With 
such a higher level of abstraction, users can browse desired information in 
a very compact form without missing the primary content. 

9.2.3 Major Cast Detection 

Finding the primary set of actors, or major cast, of a program is an impor-
tant step for recovering the structure of the program. Here we describe the 
major cast detection algorithm that Liu and Wang proposed (Fig. 9.7) 
[Liu07]. Each major cast member is characterized by two attributes: face 
and speech. The detection procedure consists of finding corresponding 
face occurrences and speech segments by analyzing video at two levels. 
Audio and visual information is utilized separately at a low level, and at a 
higher level where cues from different modalities are combined. 

At low level, the video sequence is segmented independently in both 
audio and visual tracks. In the audio track, clean speech chunks are ex-
tracted, within which speaker boundaries are then identified. On the other 
hand, the visual track is segmented into homogeneous shots, and face de-
tection and tracking are applied within each shot. At high level, both audio 
and visual information are exploited based on temporal correlation among 
different faces and speakers. All speaker segments and face tracks are 
grouped using an integrated clustering method such that segments contain-
ing the same speaker and tracks consisting of the same face are merged. A 
list of major cast members is then constructed by associating faces and 
speakers to certain characters. The order of the list reflects the importance 
of each character, which is determined based on corresponding accumula-
tive temporal and spatial presence. 

Besides speech signals, there are other kinds of sound in audio track, for 
example, music, speech with music, noise, speech with noise, etc. To sepa-
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rate and compare different speakers, it is preferred to extract speaker in-
formation based on clean speech only. Therefore the speaker segmentation 
algorithm includes two steps: (1) Extract the clean speech chunks from the 
audio track, and (2) locate the speaker boundaries in the clean speech au-
dio chunks. 

Fig. 9.7. Major cast detection algorithm. 

In Chap. 6, we introduced a few face detection algorithms. Instead of 
tracking faces directly on the entire video, the video sequence is seg-
mented into shots, and faces are tracked in each shot independently. Two 
stages are involved for face tracking within each shot: (1) detecting frontal 
faces in all frames, and (2) expanding face tracks in surrounding frames. In 
the first stage, an average face model is used to detect faces in each frame, 
where only frontal faces can be effectively detected. In the second stage, 
the detected faces are used as new face templates to search faces in 
neighboring frames bi-directionally. By using a detected frontal face as the 
template, the system can usually detect slightly tilted/turned faces of the 
same person, which are typically missed in the first stage. Clustering algo-
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rithms can be used to merge the face tracks of same person in different 
shots.  

 [Liu07] only considered detection of major cast appearances that are 
accompanied by both speech and face. Satoh et al. used visual and text in-
formation to associate faces with names [Satoh99]. The approach here is to 
associate faces with speech for major cast members based on the temporal 
correlation between faces and speakers. Following is the definition of the 
speaker face correlation matrix. The integrated speaker segment and face 
track clustering algorithm, as well as the major cast selection and ordering 
method, are based on this matrix. 

Suppose there are M speaker segments, S1, S2, ..., SM, and N face tracks, 
F1, F2, ..., FN. Different speaker segments or face tracks may correspond to 
the same person. Let’s assume that speaker segment Si has Li discontinuous 
sub-segments: si

1, si
2, ..., si

Li, each sub-segment has two attributes: starting 
time (ST) and ending time (ET). Similarly, face track Fi has li discontinu-
ous sub-tracks: f i

1, f i
2, ...,  f i

li, each sub-track has three attributes: starting 
time, ending time, and face size (FS). Here the representative face of each 
face sub-track is used to determine the face size. Then the speaker face 
correlation (CSF) matrix is an N×M matrix, whose element CSF(i, j) is de-
fined as 

i jL

m

l

n

j
n

j
n

i
mSF fFSfsOLjiC

1 1
)(),(),(  

(9.3)

where OL(x, y) is the overlapping duration of speaker sub-segment x and 
face sub-track y, and FS(y) is the face size of y. 

Figure 9.8 illustrates the correlation between speaker segment Si and 
face track Fj. This definition not only considers the temporal overlap 
among speaker segments and face tracks, but also takes into account the 
effect of face size. The consideration of face size is helpful when more 
than one face shows up during a speech segment, where the face with the 
bigger size is more likely to be the real speaker. 

Fig. 9.8. Illustration of speaker face correlation. 
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The major cast is determined by linking the faces to corresponding 
speakers. Then, an importance score is assigned to each major cast mem-
ber, so that a list of sorted major cast members is extracted. In the pro-
posed solution, association of faces to speakers entirely depends on the 
speaker face correlation matrix. The value of speaker face correlation re-
flects both the temporal (time span) and the spatial (face size) importance 
of the major cast. In the following algorithm, we perform the speaker-face 
association and major cast ordering at the same time. Suppose there are M 
different speakers and N different faces, and an M×N speaker face correla-
tion matrix CSF. The algorithm is as follows: 

1) Set i = 1. 
2) Find an entry in the CSF matrix with maximum value, denote the row 

and column indices of this entry by si and fi, respectively. 
3) Assign the speaker corresponding to row si and the face correspond-

ing to column fi to major cast i. 
4) Remove row si and column fi in CSF. 
5) Set i = i + 1, and go to step 2 unless the maximum value in CSF is 

smaller than a threshold. 
This algorithm produces a list of major cast members with correspond-

ing correlation values, which are used as temporal-spatial importance 
scores. The score for each cast member essentially measures the cumula-
tive spatial and temporal presence of this cast member. 

9.3 Conclusion 

Multimedia content is composed of a combination of audio, video, text, 
images, animation, etc. Information carried in multimedia data is distrib-
uted across all constituent parts. To effectively analyze the multimedia 
content, we need to process all available media and fuse the knowledge to-
gether. This chapter described a few multimedia content processing tech-
niques using three examples: closed caption alignment, multimodal content 
segmentation, and major cast detection. Through these three cases, we 
show the advantage of multimedia processing, compared to isolated text, 
audio, or image processing. 
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10 Research Systems 

 

10.1 Introduction 

Over the years there have been numerous research contributions to the 
field of video and audio retrieval from the academic community as well as 
rapid innovation on the commercial side from, companies including Inter-
net startups. Database systems vendors have incorporated algorithmic ad-
vances via modular architectures (e.g. Informix® Datablades, Oracle® 
Cartridges). Given the sheer number of deployments of video search sys-
tems in industry and on the Web, we will focus on a subset that are of par-
ticular technical interest, in order to illustrate the concepts presented in this 
book. An exhaustive treatment is beyond our scope, and interested readers 
should consult the valuable surveys of this field provided in [Hanjalic04, 
Lew06, Tjondronegoro07]. We will focus in greater detail on a particular 
system to provide an end-to-end practical perspective on video search. Ta-
ble 10.1 Table 10.1 lists some of the systems mentioned in this chapter. 

 
 

Table 10.1. Representative multimedia retrieval systems. 
Name Organization Year Initiated 
VMR – Video Mail Retrieval Cambridge 1994 
Informedia CMU 1994 
MIRACLE AT&T 1994 
QBIC  IBM 1995 
VideoLogger Virage 1996 
WebSeek Columbia Univ. 1996 
BNN – Broadcast News Navigator MITRE 1997 
VideoQ Columbia Univ. 1998 
SpeechBot Compaq / HP 1999 
TALES IBM 2006 

 



 10.2 Academic and Industrial Research 

One of the first groups to propose exploiting closed captions for relevant 
media retrieval was the MIT Media Lab. Their Network Plus system 
[Bender88] addressed the issue of personalization by filtering content from 
a broad spectrum of broadcast or published sources based on specified user 
interests. This is a topic of great interest today as more and more media is 
being produced and current technologies make implementing this vision 
much more practical. The Media Lab also introduced “Salient Stills” 
which are single-frame visual summaries that are appropriate for certain 
shots such as pan and zoom with fixed backgrounds [Teodosio93] where 
optical flow is used to compute a composite image. 

Cambridge University’s Video mail retrieval (VMR) project was very 
much ahead of its time in that it leveraged a novel asynchronous transfer 
mode (ATM) local video network [Jones94] as well as applied information 
retrieval (IR) methods with word spotting to enable true automated con-
tent-based retrieval of video media. The system also supported retrieval us-
ing the metadata that one would expect with a messaging system (sender 
name, time/date, duration, etc.) The team was one of the first to study IR in 
the presence of ASR error and conclude a perhaps counterintuitive result 
that has been later confirmed in different contexts on several occasions that 
the performance is only slightly impaired as compared with IR using man-
ual transcriptions [Jones95]. 

The Informedia project at Carnegie Mellon University (CMU) which 
began in 1994 was sponsored by the NSF Digital Libraries Initiative and 
its descendant projects are still active at CMU [Cristel95, Wactlar96]. An 
early instantiation ingested MPEG-1 video and used speech recognition 
(CMU’s well known Sphinx-II system) for news retrieval and supported 
speech queries [Hauptman95]. Video processing included an impressive 
suite of techniques including shot boundary detection, representative frame 
selection, face detection and optical character recognition (OCR). Closed 
captions were used when available with alignment to improve synchroni-
zation and multimodal video segmentation created visual representations 
used in interactive visual interfaces. Later, the concept of a “Video Skim” 
created visual summaries or shortened versions of longer video sequences 
via multimodal processing that attempted to convey the pertinent informa-
tion [Smith96]. By observing that closed captioned television represents a 
vast resource of partially labeled data, researchers created an example of a 
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data-driven system that could effectively learn over time. They showed 
how this resource could be tapped for adapting language models [Jang99]. 
“Name-it” was a multimodal processing approach for detecting and identi-
fying persons in video [Satoh99]. Entity extraction, combined with geo-
graphic information processing was explored in the context of news infor-
mation retrieval and browsing using spatial constraints [Christel00]. 
Recent work includes extreme interfaces where the advanced graphics ca-
pabilities and system throughput of today’s personal computers are em-
ployed to enable users to rapidly browse and interact with volumes of rich 
media content [Worring07]. CMU commercialized their indexing technol-
ogy under the name MediaSite. 

Columbia University’s Digital Video Multimedia Laboratory (DVMM) 
has made numerous contributions to this field. Projects such as WebSeek, 
VisualSeek [Smith96], VideoQ [Chang98] embody the vision of creating 
novel media processing and retrieval techniques and demonstrating them 
on real-world data with interactive response times for user queries. VideoQ 
goes beyond image based retrieval to enable true video search using mo-
tion queries enabled by video object segmentation and tracking. The group 
has been very active in TRECVID evaluations and has developed the Co-
lumbia374 dataset for high-level concept detection benchmarking (see be-
low). In addition to visual semantic classification and search systems, the 
DVMM lab has projects on video summarization, mining, near duplicate 
detection. 

IBM’s heritage of developing information management technology in 
general is well known, and the area of multimedia is no exception. An ac-
tive research program in multimedia information retrieval has been on-
going for a number of years. IBM’s groundbreaking Query By Image Con-
tent (QBIC™) system [Flickner99] is well known as one of the first suc-
cessful projects aimed at content based image retrieval. The CueVideo 
work employed automated processing for shot boundary detection and al-
lowed for visual browsing of indexed video content. IBM has contributed 
to the MPEG-7 standardization efforts, and has proven MPEG-7’s effec-
tiveness by creating and deploying tools and end-to-end systems based on 
the technology (e.g., Marvel).  Their Unstructured Information Manage-
ment Architecture (UIMA) is intended for multimedia search applications 
such as those that we have been describing. Their Translingual Automatic 
Language Exploitation System (TALES) supports advanced multilingual 
video analysis including speech to text and real-time translation with 
cross-lingual search. The system has been instantiated and deployed for 
continuous operation with four video feeds in a single rack-mount configu-
ration for Arabic and Chinese news monitoring applications [Roukos06]. 
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MITRE, a non-profit federally funded research and technology organi-
zation, developed the Broadcast News Navigator (BNN) in 1997 [may-
bery97] which included particular emphasis on multimodal story segmen-
tation. More recently they have focused on fine-grained content 
personalization and created the P-BNN system [maybery04] which effec-
tively produces “personalcasts” based on user interest profiling. Metadata 
is generated for content segments beyond what is supplied with electronic 
program guides. The system includes query expansion and refinement 
along with relevance feedback and local context analysis for tailoring the 
source content to match the users’ interests. 

AT&T’s Bell Labs (and later AT&T Labs) has made numerous contri-
butions to telecommunications technology, from fundamental information 
theory up through speech processing and video compression standards 
such as MPEG-4. In the early 1990s, the Machine Perception Research de-
partment began developing real-time video segmentation algorithms that 
went beyond shot-boundary detection to include intra-shot sampling based 
on analyzing the camera operations [Shahrary95]. Unlike other algorithms, 
the method relied primarily on motion features rather than color histogram 
features. Efficient processing enabled these more complex features to be 
computed in a practical system. Based on this video segmentation, the 
team experimented with techniques for selecting compact sets of represen-
tative images that would best convey the visual content of the video. Addi-
tional media processing including natural language processing of closed 
captions was used to build ‘condensed’ versions of broadcast television 
programs. These very low bitrate representations were ideal for printing 
and network delivery to subscribers using the technology available at the 
time which consisted of dial-up modems that were incapable of delivering 
high-quality full-motion video. While replaying representative images 
along with text and optional audio streams achieved the goal of high media 
compression, it still required isochronous playback, which had two nega-
tive implications: (1) although comparatively low, there is still a minimum 
network bandwidth required to deliver the content, and (2) the viewer 
could not easily consume the content faster than the original media presen-
tation duration. To address these concerns, AT&T proposed producing 
printed versions of video programs called “Pictorial Transcripts” [Shahra-
ray95a]. These compact representations of video programs were ideally 
suited for delivery to Web browsers which were emerging at the time since 
they effectively converted video programs into Web documents.  

While originally developed to overcome the limitations of networking 
and terminal device technology of the day (this was an early example of 
content adaptation), the aspect that these representations could be viewed 
faster than real-time provided enduring redeeming value. As we have seen, 
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browsing results sets is a key component for video search engine systems. 
By combining the lightweight video summaries available in the form of 
pictorial transcripts with video archiving and streaming services, systems 
were constructed that enabled rapid access to large video collections in a 
manner that seamlessly leveraged available networking and computing re-
sources. For example, broadband-connected users could rapidly page 
through dynamically generated video results formatted as documents and 
then use these to interact with and control high-quality streaming video 
playback. Users with less capable devices could view page representations 
which captured the essence of the video content.  

The AT&T research group focused mainly on distributed architectures 
for delivery of video and audio material using content-based indexing, 
which matched well with a telecommunications company’s business inter-
ests. Today these architectures are the norm given the advances in IP me-
dia delivery. These concepts were embodied in their Digital Video Library 
(DVL) which supported rapid access to large video archives streamed over 
the Internet. To extend the application areas beyond closed captioned or 
subtitled content, AT&T drew from decades of speech processing research 
and employed large vocabulary automatic speech recognition (LVASR) 
based on their Watson recognizer. While speech was used for retrieval, 
parallel text alignment methods were employed to create very high quality 
multimedia documents using post-production scripts or manually prepared 
transcriptions. The team developed media personalization and device adap-
tation methods to facilitate “lean back” content access [Gibbon03]. For te-
lephony applications where acoustic conditions are relatively poor, AT&T 
investigated phonetic and lattice search techniques [Saraclar04].  More re-
cently, the group developed the MIRACLE video search engine which in-
corporated EPG metadata from DVR sources as well as other content 
sources such as Podcasts [Gibbon06, Liu06]. 

In 1997 AT&T participated in the TREC Spoken Document Retrieval 
and incorporated document expansion to improve performance when ASR 
conditions are poor [Singhal97]. The SCANMail project developed tech-
nologies including entity detection, customized language models and ad-
vanced user interfaces for voice mail applications [Whittaker02]. The 
PRISM (portal infrastructure for streaming media) project focused on effi-
cient delivery and resource identification schemes for broadcast television 
content [Basso00] and SBTV (searchable browsable TV) investigated con-
tent indexing for RTSP delivery of MPEG-2 media [Gibbon99]. At the 
AT&T Cambridge Research Labs, the AT&TV project built on the Digital 
Asset Retrieval Technology project (DART), which focused primarily on 
personal media collections, to support continuous acquisition of multiple 
broadcast channels stored in MPEG-1 format [Mills00]. Recently AT&T 
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has participated in the TRECVID shot boundary detection evaluations and 
collaborated with Columbia University on other tasks [Liu07]. 

Many other enterprises whose products and services relate to media, en-
tertainment or consumer electronics have active research groups that con-
tinue to provide results for the community at large. The computing indus-
try, e.g. Microsoft Research, Intel, etc. have also played an important role 
in technology development since handling media is a key capability of to-
day’s computing platforms. Many exploratory systems have been devel-
oped that bring media content processing and retrieval methods to bear on 
applications of interest to the constituent entities. For example, at Phillips, 
the Video Scout system demonstrated advanced media personalization ca-
pabilities for DVR applications [Demetrova03]. 

 
 
 

10.3 Early Internet Deployments 

As we saw in Chap. 1, there is a wide range of Web sites offering some 
form of video search. Here we focus on some of the early Internet deploy-
ments and in particular, sites with a focus on automated media analysis for 
retrieval. Again, this is not an exhaustive list, but some representative and 
well known examples are provided. 

 

10.3.1 SpeechBot 

SpeechBot was developed at the Compaq (later HP) Cambridge Research 
Labs in 1999 and was one of the first speech indexing systems to ingest 
large volumes of Internet content. "By early June 2003, the seven-member 
group, based at HP's Cambridge Research Laboratory in Cambridge, Mass. 
(USA) had catalogued more than 17,000 hours of multimedia content – 
making SpeechBot the largest multimedia index in the world" [Stuart03]. 
As RSS with media enclosures was not in widespread use at the time, 
SpeechBot used a traditional crawler architecture to obtain media files for 
indexing.  

SpeechBot used the Calista recognizer based on HMMs [VanThong00] 
trained using the HUB-4 1998 training corpus, and had a 64K word vo-
cabulary with 4M bigrams and 15M trigrams. The word error rate was re-
ported to be 20% for studio content, up to 50% for lower quality speech. 

226



10.3 Early Internet Deployments  

Interestingly, the acoustic models were generated by compressing the 
training data to form a better match to the content typically encountered on 
the Web at the time (Real audio was prevalent). Also, the sampling rate se-
lected was 8 kHz which is generally associated only with telephony band-
width speech today. Processing took 6 to 30 times real-time using 450 
MHz Pentium II processors. SpeechBot segmented long-form content into 
fixed-length units (20 seconds) to help the IR engine identify revenant con-
tent and metadata was also added to the index [Eberman99]. The team also 
built BoogeBot for music search which finds similar songs to a given sam-
ple in a database of 18,000 songs. SpeechBot went offline in 2005 and is 
now no longer available. 
 

10.3.2 StreamSage 

StreamSage was founded in 2000 and acquired by Comcast in 2005. It 
provides video search services for Comcast’s broadband subscribers (vide-
osearch.comcast.net). Videos are displayed using a unique video browsing 
user interface based on flash and a circular thumbnail display (“The Fan”). 
StreamSage has participated in TRECVID evaluations [Rennert03] and has 
developed systems using term mutual information and topic segmentation 
to improve retrieval performance [Davis04]. 
 

10.3.3 SingingFish 

Around the height of the dot com era, SingingFish emerged and enjoyed 
great success as the media search engine tied into the media players of the 
two dominant streaming media systems of the time: Real and Windows-
Media. Founded in 1999 and later acquired by Thompson and then AOL, 
SingingFish employed its Asterias crawler to discover content and it also 
developed a content producer program for managed content contribution. 
This hybrid approach to content acquisition is common today as most ma-
jor search engines include an aggregation aspect. Many Internet users are 
not familiar with the name, since SingingFish typically provided search re-
sults through third party end user media applications or Web media desti-
nations / portals [Fritz03]. SingingFish has employed MPEG-7 and made 
contributions to using MPEG-7 for media search, including extensions to 
the Media Format description scheme to improve efficiency [Rehm00]. 
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10.4 Selected Commercial Systems 

One of the most widely known video search companies, Virage, grew out 
of the observation that image analysis must be domain-specific to be suc-
cessful, and yet a common infrastructure or architecture can be defined for 
a wide range of applications [Bach06]. This philosophy is extended in the 
context of video retrieval as well as image retrieval. Virage produced sev-
eral commercial systems including VideoLogger which supported video 
segmentation, closed caption and speech retrieval among other media 
analysis modules in a “pluggable” architecture, with a flexible file format 
for storing the indexing results (called VDF). 
 

10.4.1 Virage and Convera 

Virage faced competition from other startups as well as more established 
information retrieval product and service suppliers such as Excalibur (now 
called Convera). Many of these companies developed systems for specific 
applications or data collections and in many cases these data collections 
were evolving from text to include multimedia content as well. Convera 
developed a product called ScreeningRoom that incorporated advanced 
media analysis and supported SQL for integration with databases such as 
Oracle. Media asset management systems (e.g. Artesia) and production 
tools (e.g. Avid) vendors also saw the value of automated media indexing 
for many production and archival management applications and sometimes 
formed alliances or otherwise provided some measure of support for media 
logging applications such as Virage’s VideoLogger. 
 

10.4.2 Nexidia (FastTalk) 

Nexidia (formerly FastTalk) supports a wide range of audio search appli-
cations using phonetic search. They create a “phonetic audio track” or 
.PAT file for each asset [Nexedia08]. The phonetic approach circumvents 
the out-of-vocabulary problem and facilitates supporting multiple lan-
guages without requiring custom dictionaries. The company has close ties 
with the Georgia Institute of Technology. Fast-Talk was “founded in 2000 
based upon basic research at Georgia Tech’s Interactive Media Technol-
ogy Center” [FastTalk08]. At the time, the focus was on word-spotting but 
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later expanded to include phonetic search, transcription alignment, and 
other audio tools. 

 
 
 

10.5 Resources: Datasets, Evaluations, Conferences 

Collections of multimedia data aid researchers in algorithm development 
and can be indicative of the progress of the state of the art over time. For 
example, in the image coding community, one can track the reconstructed 
image quality for a given bitrate over the years as new coding algorithms 
and standards were developed. Similarly for speech recognition tasks, the 
word error rate, perhaps at a real-time operating point, can be studied for 
different systems. Unfortunately, the video information retrieval commu-
nity has not enjoyed the same level of availability of reference datasets as 
has been the case for speech and text data. For most organizations respon-
sible for producing video, their archival collections are viewed as strategic 
assets, and releasing them even under strict licensing agreements is 
deemed not to be worth the risk of potential loss. Video sources in the pub-
lic domain such as archive.org may not be a good match for the applica-
tions under study due to the age or genres of the content. In Chap. 2 we 
presented application areas and sources of data for which video search en-
gine systems have been built; here we focus on datasets that have been la-
beled with ground truth for algorithm development. 

Table 10.2 lists a handful of datasets that have been used by the multi-
media information retrieval researchers along with the responsible organi-
zations. Where an organization has multiple similar datasets, a single rep-
resentative is chosen for brevity. The TRECVID program each year 
produces datasets for laboratory style evaluations focused specifically on 
video information retrieval applications. For uni-modal processing tasks 
such as face recognition and speaker identification, other organizations 
maintain datasets and these are used for multimedia applications as well. 
The Linguistic Data Consortium provides a broad range of datasets for 
speech and natural language research, and also works with NIST to pro-
vide TRECVID data. The HUB-4 set was widely used by the multimedia 
information retrieval community for systems focused in the broadcast 
news domain. The Disruptive Technology Office (DT) has developed the 
Large Scale Concept Ontology for Multimedia (LSCOM) and Columbia 
University and CMU have annotated TRECVID 05/06 keyframes based on 
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a selected subset of concepts. Along with this, Columbia University pro-
vides extracted low level image features used to train models, as well as 
the labels obtained via late fusion of several classifiers to serve as an accu-
racy benchmark. This dataset, known as the Columbia374 [Yana07], is a 
selected subset of 374 high level concepts and has begun to be used by 
other groups (Viero-374). Earlier, the MediaMill Challenge set [Snoek06] 
identified 101 semantic concepts. 

 
Table 10.2. A sampling of multimedia retrieval datasets. 

Dataset Media Organization Comments 
TRECVID Video/Audio, key-

frames, transcriptions
NIST / LDC Multiple datasets; new data 

added each year 
MediaMill 
Challenge 

Annotated keyframes MediaMill 101 semantic concepts base 
on the TRECVID 05/06 
dataset 

Columbia374 Annotated keyframes Columbia 
University 

374 semantic concepts base 
on the TRECVID 05/06 
dataset 

HUB-4 Speech, Transcrip-
tions 

LDC Broadcast News ~1996 

TDT Text LDC Reuters and CNN news 
stories used  by MM re-
searchers for topic segmen-
tation 

EARS/MDE Speech, Annotations LDC Metadata extraction from 
speech. 

FERET Images NIST Face Recognition, ~1993 
FRGC Images, 3D data NIST, et al. Face Recognition Grand 

Challenge, High resolution, 
3D, multi-view 

Corel Images  Image Retrieval 
VACE  ARDA Video Analysis and Con-

tent Extraction 
Wordnet Text Princeton 

University 
Synonyms, relations, for 
NLP work 

Penn Treebank Text U. Penn linguistic structure, tagging 
  

 
The Linguistic Data Consortium (LDC) provides an invaluable function 

for natural language research. Their datasets are the benchmark for many 
speech recognition and natural language processing tasks. Recently, keep-
ing in sync with current research trends, the nature of the datasets has 
evolved from a focus on speech to text (STT) to rich transcriptions and 
metadata extraction. One of the goals of this is to “enable technology that 
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can take the raw STT output and refine it into forms that are of more use to 
humans and to downstream automatic processes.” [Strassel03].  

In addition to these valuable datasets for benchmarking algorithm per-
formance, many groups make baseline implementations of algorithms 
available. Also, there is a wide range of applicable tools available to be 
used as building blocks for media processing algorithm development (e.g. 
Intel’s OpenCV Open Source Computer Vision Library). 

 

10.6 Media Monitoring Deployments 

Broadcast monitoring services employ video search at large scale and with 
high reliability, and yet most Internet users are unaware that they exist. 
These services capture broadcast television content including local pro-
gramming continuously and in different geographic regions. They create 
and maintain databases that support keyword search on the closed caption 
and provide additional services such as alerting. The services can incorpo-
rate data feeds from Nielson Media Research™ to indicate the audience 
size and use SQAD™ to provide information about advertisement costs. 
For example, Video Monitoring Services (VMS™), founded in 1981, 
monitors all 210 defined metropolitan areas (DMAs) in the US and can 
provide near real-time Web access to the captured media [VMS08]. Criti-
cal Mention™ was founded in 2002 and provides broadcast monitoring 
services for a wide range of applications. They maintain a database of over 
5 million “clips” and “25 TB of indexed television content” [Critical08]. 
Incidentally, media monitoring in one form or another has been existence 
for many years, for example BurrellesLuce has been in the business for 
over a century [Burrelles08]. The TALES system mentioned above is in-
tended for media monitoring applications as well, primarily for multi-
lingual applications. A suite of services related to broadcast monitoring 
and offered by some of the same companies is based around maintaining 
advertisement databases. These services extend the range of applications 
beyond news alerting to include competitive ad monitoring for enterprise 
customers. 
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10.7 Case Study: AT&T MIRACLE 

10.7.1 Introduction  

In order to give readers an intuition for some of the practical issues en-
countered in building content based retrieval systems, we will take a look 
at the MIRACLE (Multimedia Information Retrieval by Content) system 
in detail. This system has been developed over a number of years and is 
maintained by AT&T researchers as a platform for media processing algo-
rithm development. The system ingests content on a daily basis from 
broadcast TV as well as Internet sources. Both continuous ingest and EPG 
driven acquisition modes for selected broadcast programs are supported. 

The design goals include efficiency and ease of maintenance, but above 
all, flexibility and extensibility. There is an archival aspect which implies 
that older content may have been processed with earlier versions of algo-
rithms, or may not have been subjected to newly developed media process-
ing modalities at all. Similarly, content is ingested from a variety of 
sources with varying degrees of available source metadata. And finally, the 
applications supported by the platform run the gamut from personalized 
mobile media through video data mining for trained users with worksta-
tions, to advanced content processing for IPTV service prototyping. This 
requires extensibility and well defined system interfaces (e.g. Web ser-
vices.) 

10.7.2 System Architecture 

The overall architecture follows the framework that we have been discuss-
ing, a content acquisition block, followed by content processing and then 
archival storage with a query processing and user interface module (Fig. 
10.1), where CMS refers to a content management system. In this case, 
copies of the content are stored in archival servers, and in fact, multiple 
versions of each asset are produced via transcoding for different applica-
tions. Logically, it is easiest to think of the processing in terms of batch 
operations on media files, but the system is also capable of operating in a 
real-time mode in which the processing operations begin as the content is 
being acquired to minimize the end-to-end latency between content acqui-
sition and posting to the content servers. 
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Fig. 10.1. MIRACLE system architecture. 
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10.7.3 Collections  

The system ingests content from a variety of sources. The main collections 
are as follows: broadcast television sources, video and audio podcasts, and 
enterprise video. The average runtime for a program is about 45 minutes 
and the number of assets for these collections is indicated in Table 10.3. 
Other collections not shown include user generated content, rushes mate-
rial with annotations, lectures with slides, and collection of a multilingual 
movie subtitles in over 20 languages. Although this is a prototyping plat-
form and the size of the collections is somewhat modest, the scale is large 
enough to give a reasonable indication of system performance when de-
ployed. Note that each asset includes metadata and keyframes and typi-
cally includes multiple copies of the source media at different bitrates and 
in different encoding formats. Fig. 10.2 shows that over time, higher qual-
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ity renditions became practical to process and maintain on-line. Addition-
ally, the available source metadata for each asset improved over time as 
better sources such as EPG and RSS were added to the platform. It is the 
responsibility of processing algorithms and user interfaces built for 
MIRACLE to exploit available metadata and media, but gracefully cope 
with the fact that the database contains assets with different amounts of 
metadata, and that there are various media representations available for a 
given asset (Fig. 10.2). Although the timeline in the figure ends at 2006, 
collection of video material continues and the capability to acquire higher 
bitrate HD video has been added. 

 
  

Table 10.3.  Metadata and size of several MIRACLE collections. 
Collection Text Source Assets  Metadata 
Broadcast TV Closed Captions 50,000  EPG 
Broadcast TV Spanish Lang. CC 2,000  EPG 
Broadcast TV Speech Recognition 20,000  EPG 
Broadcast TV Transcripts 4,000  EPG 
Video Podcasts Speech Recognition 4,000  RSS 
Audio Podcasts Speech Recognition 5,000  RSS 
Enterprise Video Pre-Production Scripts 600  CMS 
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10.7.4 Data Organization 

Each media item (or file) ingested into the system is assigned a unique 
content identifier (CID), and this is mapped to a filesystem path into the 
archive for storage of the media and derived metadata. In addition to the 
CID, each asset is described by a minimum of four descriptors as follows: 

1. owner identifier – entity responsible for originating the content; 
2. series identifier – for episodic or recurring programs, this identifies 

the series; 
3. series title – text string describing the series; 
4. creation date – UTC indicating the asset creation date and time. 

As can be seen, this data is easily derived from typical metadata sources 
such as EPG and RSS. However, the system is capable of synthesizing 
these fields in rare cases if necessary given simply a bare media file. In this 
case, assuming no metadata is available from the media file container, the 
filesystem metadata indicating file owner and creation date is used and the 
filename is used to populate the title and series name fields. These fields 
are indexed so that queries for lists of all content from a given owner or for 
a given series can be quickly processed. 

Any additional metadata that is available such as the episode title, de-
scription, date aired, etc. is captured and maintained in XML format. For 
content already described by XML such as RSS or ADI, the relevant XML 
elements for the media item are extracted and preserved in the archive 
along with the asset. If required by the application and justified by the vol-
ume of assets, these additional fields can be indexed in addition to the ba-
sic attributes described above. 

Each textual representation of the media item is individually maintained 
and indexed in the archive. Primarily these are various transcriptions of the 
dialog, but of course for some content there is no dialog (such as for some 
user generated content or raw footage), and the system and applications are 
designed to accommodate this. If available, field annotations are indexed 
(e.g. an annotation may describe a wide shot in a town as “WS of street”). 
The dialog representations may include one-best speech transcription, 
closed caption, as-aired transcriptions, teleprompter feeds, subtitles and 
translations. 

To summarize, each media asset in the system has a base set of descrip-
tive tags, may have additional metadata, and may have zero or more tex-
tual representations of the dialog or annotations. Further, there may be 
multiple versions of the linear media at different bitrates and in different 
encoding formats. Managing this heterogeneity increases the complexity of 
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the system and applications, but results in increased generality, and facili-
tates exploratory research. 

 
 

10.7.5 Acquisition / Ingest 

The purpose of the acquisition modules is to locate and obtain content and 
metadata and to post that content to the processing module. While the sys-
tem has the capability to ingest content from a wide range of sources (e.g.  
H.264 multicast video from professional encoders typically used in IPTV 
applications), we will focus on the two primary acquisition modules for 
MIRACLE which handle content recorded from DVRs and RSS sources. 
The acquisition modules record or download requested content as specified 
by the system configuration. They also check with the database to insure 
that multiple copies of the same content are not inserted.  

Consumer grade DVRs don’t offer the quality or reliability of broadcast 
quality equipment and encoders. However, there are several redeeming 
qualities of DVRs including: 

1. Ease of configuration – designed for consumers, so EPG 
configuration and program scheduling are simplified and can even be 
done with an IR remote. 

2. Acceptable video quality – digital broadcasts (ATSC DTV or DVB) 
can be captured directly. While this is far from archival quality, good 
quality transcoded versions for streaming applications can be derived. 
Even with analog video capture and local MPEG-2 encoding, the 
quality is acceptable for many applications such as creating proxy 
quality for Internet delivery.  

3. Metadata management – EPG data and closed caption are captured. 
4. Developer community – related tools are available from a large 

community of developers. 
5. Low cost – orders of magnitude lower than corresponding 

professional equipment. 

In one instance of the platform, multiple Windows Media Center Edi-
tion DVRs are used to gain a measure of redundancy by programming 
more than one system to record a particular feed. These systems maintain a 
buffer of typically 10 days worth of recorded content in DVR-MS format 
which provides an additional measure of system resilience. The recording 
format conveniently encapsulates MPEG-2 and EPG metadata in a single 
file and can support encryption.  For analog acquisitions the systems are 
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configured to encode 720x480 NTSC at 6Mb/s MPEG-2. For ATSC, other 
resolutions such as 704x480 SD and 1920x1080 HD resolutions can be 
captured at up to 9.5GB / hour. The DVRs are configured to record content 
in one of two ways: 

1. Episodic – several programs are selected (e.g. evening news) for each 
DVR and for each program, each episode is recorded. Repeat 
broadcasts are not processed. The programs may be received on 
different channels and the DVR will change the channel prior to 
recording. 

2. Continuous – the DVR is configured to record a single channel 
continuously, 24 hours a day, 7 days a week. All content is processed, 
including any repeat broadcasts. 

In addition to using DVRs for content acquisition, the system also proc-
esses media files from the Web in the form of audio and video Podcasts. 
While this content source obviously differs from DVR acquired content in 
available metadata, resolution and encoding, the system attempts to nor-
malize these disparate sources as much as possible so that applications 
need not be concerned with the content source. The acquisition module es-
sentially performs the same functions as an RSS feed reader which is to 
periodically check a predetermined list of feeds for any new content and 
download the media components and metadata. A partial metadata map-
ping operation is performed to populate the above described minimum re-
quired fields as well as a few optional fields such as the description. In this 
case, the “owner” corresponds to the origin RSS URI IP name, and the “se-
ries name” is derived from the URI path. Additionally the source RSS 
metadata is preserved since it may contain additional metadata that may be 
of value for applications. This architecture offers inherent redundancy for 
search engines because the content is buffered at the source, and the reader 
can make multiple attempts to ingest the content if necessary. While some 
sources maintain 10 or more recent episodes, some sites only post the most 
recent episode, so this somewhat limits the acquisition system failure resil-
ience.  While reading RSS feeds is certainly less complex than capturing 
live broadcasts (for one thing, no special hardware is required), there is 
more variability in the content sources in terms of media resolutions and 
formats that the processing system must be able to manage. Also, this con-
tent does not include closed captioning, so the quality of the text represen-
tations is limited to speech recognition output. This architecture is easily 
extended for ingesting VoD content packages in ADI 1.1 and MPEG-21 
format. 
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10.7.6 Content Processing 

The acquisition modules push their content up to a centralized queue and a 
cluster of processing nodes performs the operations of metadata extraction 
and transcoding. For high bitrate media, an optimization is implemented to 
reduce network accesses by distributing this logical queue across the 
physical disks in the processing nodes. The processing operations are indi-
cated by Fig. 10.3, which shows a particular flow of an individual media 
asset through the system. The processing modules are invoked as appropri-
ate for the asset (e.g. closed caption processing is not invoked for Podcast 
content.) Each module represents its analysis results in XML and these are 
filtered and combined into a compilation XML representation so that ap-
plications can easily access all of the results of media processing in a sin-
gle operation. Also, additional modules may be easily added as new algo-
rithms are developed and computing resources become available. For 
example, for a subset of the content, semantic classifiers (i.e. Colum-
bia374) are applied after content based sampling. Such additional process-
ing can easily be applied to the archived material and the results captured 
by injecting additional elements into the XML representations. In fact such 
a metadata augmentation operation is preformed on a regular basis to im-
port transcriptions that become available for some broadcast content within 
a day or two of the broadcasts. A process similar to an RSS feed reader 
downloads transcripts and performs a text alignment (similar to the closed 
caption alignment in Fig. 10.3) and generates a new, higher quality meta-
data description of the corresponding asset. 

 

 
Fig. 10.3.  MIRACLE content processing. 
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 10.7.7 Real-time processing 

The batch mode processing described above is designed for scalability 
(additional processing nodes can be added as needed) and reliability (con-
tent is buffered and can be reprocessed if necessary.) However, for appli-
cations such as generating personalized multimedia alerts of news events, 
end-to-end latency is a critical design parameter. Since most of the proc-
essing modules operate locally on the media stream, the system is designed 
to be operated in a dataflow configuration as well. This way, as the media 
is written to disk by the DVR, it is read by the content processing thread so 
that the index will be available immediately after the recording concludes. 
To further reduce latency, the modules are designed to stream their results 
to disk so that alerting or publishing modules can operate on the index 
while the content is being recorded. While in batch mode the only real-
time requirement for the DVR is that it writes the compressed media to 
disk without dropping data, for real-time processing we must carefully se-
lect of a set of processing modules based on the CPU utilization of the 
DVR. The system is configured so that the processing operates somewhat 
faster than real-time on average. For modules that require offline process-
ing (e.g. multimodal topic segmentation,) a second pass post-processing 
operation is performed. This real-time configuration is used for the con-
tinuous acquisition mode described above. 

 

10.7.8 Query Engine 

The media, representative frames and metadata are stored in a central re-
pository and organized into logical collections (e.g. broadcast TV with 
Spanish language Closed Captions, Enterprise content with scripts, etc.) 
Indexing services operate on the textual content and the global metadata 
asynchronously to build a content index.. Additionally other databases in-
dex the XML-formatted metadata to support more advanced content que-
ries such as visual concept queries. A two-phase process is used to render 
HTML results pages based on textual and global metadata (e.g. programs 
about NASA this week). First, a ranked set of documents matching the 
query is generated, this is then broken into pages of results (typically 20 
items) for the user. For each page, the asset metadata such as title and date 
are displayed along with a “video paragraph” consisting of a thumbnail 
and matching query context for the most relevant segment of the program. 
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For different applications the relevant metadata is transformed to build 
user interfaces in different ways through a rendering operation. This not 
only allows for different layout styles, but also filters the available meta-
data so that only the fields pertinent to the particular application are proc-
essed. Finally, based on the application or user preferences, content loca-
tors are used to retrieve the relevant media with a range of delivery options 
by means of a media metafile generator. The generator builds ASX or 
SMIL to position long-form media at the relevant starting point. Alterna-
tively, media player plug-ins can be used with client side scripting for me-
dia positioning. 

 

10.7.9 Applications 

The system supports an expanding set of applications ranging from a sim-
plified query interface with a single search text box, up through advanced 
interfaces intended for trained archivists, and video data mining applica-
tions with visualization. For example, Fig. 10.4 shows the frequency of oc-
currence of the term “world cup soccer” over a several-year collection of 
video programs. The visualization interface is interactively generated and 
the histogram columns are hyperlinked to generate queries restricted to a 
particular year. Other views of user interfaces built on the MIRACLE plat-
form are shown in Figs. 6.16 – 6.18. 

10.7.10 Performance 

Table 10.4 gives a sense of the relative complexity of the various content 
processing operations. The real-time factor is the ratio of processing time 
to media play time for a particular processing node. Note that these figures 
do not represent the best achievable values since extensive optimizations 
such as parallelization have not been undertaken. The indicated indexing 
operations execute faster than real-time for this particular processing node, 
but the addition of media transcoding for multiple devices would require 
an additional node running in parallel for real-time operation. The most 
time-consuming operation is transcoding for standard definition resolution 
applications including IPTV, however optimized solutions employing digi-
tal signal processing hardware acceleration can perform this in real-time. 
In fact, encoders for IPTV applications routinely encode HD resolutions as 
well as lower resolution streams (for picture-in-picture applications) simul-
taneously. 
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Fig. 10.4. Mining a multi-year video archive based on content. 
 
 

Table 10.4. Media processing real-time ratios for a 30 minute 720x480 MPEG-2 
file (Dual Intel Pentium Xeon Dual Core 3.0GHz, Dell PE 1950, 15K RPM SAS). 

Indexing Real-time 
Ratio 

Video Processing 0.20 
Face detection (key frames only) 0.09 
CC processing 0.03 
Topic segmentation 0.03 
Prepare audio 0.09 
Speech recognition 0.49 
Keyword extraction 0.06 
Subtotal 0.99 
  
Transcoding  
MPEG-2 SD to WMV QVGA 0.49 
WMV QVGA to MP4 QVGA 0.17 
WMV QVGA to WMV QCIF 0.07 
WMV QVGA to WMA 0.07 
MPEG-2 SD to WMV SD 1.93 
Subtotal 2.73 
Grand Total 3.72 
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The processing and transcoding operations can be selected to form an 
execution profile for a particular application. The full suite represented in 
Table 10.4 is used for recording episodic broadcast content, where proc-
essing servers utilize the idle time between episode broadcasts to generate 
the transcoded versions. A second profile is used for continuous acquisi-
tion from DVRs where streaming proxy resolution is desired. In this case, 
speech recognition and closed caption alignment is not performed, and 
only a single QVGA WMV transcoded stream is generated. Another proc-
essing system configuration profile for locally indexing content on Media 
Center PCs does not require any transcoding since the media can be played 
back from local files. 
 

10.8 Conclusion 

The field of content-based video search involves complex image process-
ing algorithms that are often data driven and require verification against 
test data. Efficient implementations are required to ensure performance on 
a wide variety of content types, and demonstrate that the approaches are 
generalizable. Many research groups have undertaken the task of imple-
menting systems and over the years the complexity and capability of these 
systems continues to grow. We have taken a brief look at a handful of the 
well known systems, and some relevant but less well known commercial 
systems. We discussed a practical system in detail to convey an intuition 
for the computing requirements for certain content processing operations. 
We described an end-to-end content processing platform suitable for algo-
rithm development and prototyping novel services based on automated 
metadata augmentation. 
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11 Current Trends in Video Search 

 

11.1 Introduction 

 
We’ve seen that video is ubiquitous on the Web, and that video search 
sites may focus on a particular aspect such as video sharing, aggregation or 
original content. Regarding search, sites may have a rich tagging capability 
or support queries similar to traditional databases while others support full 
text search of dialogs. Our examination of a wide array of video sources 
intended for various applications brought to light the range of available 
metadata that may be available for a given class of video material. Some 
are rich in standardized metadata, while other content sources such as user-
contributed have limited metadata and may rely more on feedback from 
viewers to enrich the metadata and provide ratings so that others may 
navigate the content more easily. We’ve reviewed basic digital video tech-
nology with a focus on issues related to video search such as compression, 
transport, metadata representation, container formats, and media player 
systems. Our introduction to media processing presented the state of the art 
in metadata extraction from media with the goal of augmenting available 
metadata for retrieval applications. We examined processing individual 
media types including text, audio, and video as well as multimodal tech-
niques. Theses methods are embodied in the research systems which have 
been improving steadily over the years. 

In this chapter, we observe certain trends related to video search. We 
will try to avoid predicting the future, but by articulating where things 
were and the current state of the art, we can give the reader a sense of the 
general direction of constituent technologies as well as social trends. In-
creasing bandwidth, storage density and computational power are familiar 
to us given Moore’s law and they enable advances such as the cost effec-
tive evolution from standard definition to high definition video – even for 
consumer camcorders. 
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 11.2 Video Production 

 
Today’s video distribution systems are digital (e.g. DBS, ATSC, DVB) 
and we are finally arriving at the cut-over from NTSC analog broadcast 
over the air to ATSC digital in the US. Across the Media and Entertain-
ment (M+E) industry analog production equipment and media are either 
gone or on the way out. However, film still maintains a foot-hold in some 
areas such as on the consumer side in disposable cameras and for archiving 
movies [Cieply07]. Also, many content owners have large analog tape li-
braries which are costly to transfer to digital formats. 

11.2.1 Metadata Retention 

At great expense, broadcasters have made the switch over to HD equip-
ment, and this requires end-to-end upgrades from cameras to play out sys-
tems. This newer generation of equipment is often IP enabled and this 
holds the promise of better metadata preservation. Additional instrumenta-
tion and logging from devices and systems such as cameras and file based 
editing systems is allowing more retention of production metadata using 
standardized formats such as MXF. This should reduce the need for auto-
mated processing to recover the program metadata and structure after dis-
tribution, but good practices and interoperability must be proven out for 
this trend to truly take root.  

11.2.2 Multiple Distribution Channels 

Rather than producing for a single target such as a half hour broadcast slot, 
content is created with multiple distribution channels in mind including 
online and mobile. In many cases a broadcaster may reuse content for mul-
tiple services, providing adapted versions as appropriate (e.g. footage may 
be released with different narration on Discovery Channel vs. Discovery 
Kids). As another example, many news organizations distribute Podcast 
versions of their productions, with shorter ad breaks.  Production resources 
such as the studio, staff and on-screen talent, already in place for a primary 
production, can be efficiently exploited to create short-form content, per-
haps with little more incremental cost than an additional script (e.g. Katie 
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Couric’s Notebook is a one minute Podcast, produced daily by NBC news 
that contains material not used for the nightly news broadcasts.) 

11.2.3 Mobisodes and Webisodes 

In addition to the reuse or repurposing for multiple distribution channels, 
there is a new body of content that was never conceived to be long form 
nor main stream. This includes Podcasters like Rocketboom, vlogs like 
Brotherhood 2.0 and user generated content sources. As users consume 
more and more content interactively on the Web, or on the go on portable 
devices, the trend toward short form episodic content will continue, per-
haps offering new paradigms for linking from one short clip to the next in 
a sequential manner. On the research side, Hart points out the value of 
searching short form content, which has not been a major research focus – 
many of the multimedia retrieval evaluations and benchmark datasets fo-
cus on long form content (e.g. such tasks as summarization, shot and story 
segmentation are most useful for long form content) [Hart05]. 

The Web is a great vehicle for bringing in value from archives of 
shelved content such as old TV series. The costs are low, but of course the 
return is not comparable to newly produced content. Also there is a risk of 
loss of syndication revenue due to audience fatigue, but differing demo-
graphics between on-line and TV viewers mitigate this somewhat. In the 
past, the release of the content on the Web is “last” after broadcast, syndi-
cation, DVD, etc. But recently, creators are experimenting with simultane-
ous release or other strategies to link linear, Web and mobile releases and 
cross-promote them [Welsh07]. 

11.3 Video Distribution 

 
MPEG-2 is certainly not going away; there a millions of DVD players and 
installed set-top boxes that do not support MPEG-4, but newer deploy-
ments such as IPTV and mobile devices such as iPods and cell phones use 
MPEG-4 to provide higher quality at lower bitrates. Combining this with 
the increased storage capacity of affordable disk drives enables larger vol-
umes of video to be stored at the end user terminal equipment such as 
DVRs – increasing the need for video search and categorization systems. 
On the professional production side HDCAM SR brings MPEG-4 (part 2 
in this case) into mainstream use at the very start of the content life cycle 
in addition to distribution. 
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11.3.1 Streaming Protocols 

UDP streaming protocols have the flexibility to be optimized for the appli-
cation of media delivery. For a given bandwidth, UDP transport provides 
the best quality – rather than using bandwidth for retransmission of lost 
packets, transmission errors are concealed at the receiver and more band-
width is available for the payload. However, using HTTP over TCP pro-
vides reliable transport and does not require special firewall configuration; 
it practically guarantees that if a user can see a Web link to the video, then 
they will be able to access the video itself. Reliable transport means that 
extra bits are not used for error resilience, so more efficient coding may be 
used (e.g. long GoP). The requirement of a large play-out buffer at the cli-
ent is not a concern given modern clients. The simplification provided by 
the move to HTTP for media delivery greatly improves reliability, yielding 
a better quality of experience for the video Web. Deployed Web load bal-
ancing and content delivery systems can be reused for cost effective media 
delivery. Interestingly, for short form content where random access is not 
critical, HTTP streaming using byte range requests is not necessary, and 
the situation is essentially that of progressive download which was an early 
form of Web media delivery. 

Media format wars have been on-going since before the Web, so we are 
unlikely to reach a state where there is a single media format. However, 
recently Flash video has emerged as the format of choice due to the wide 
installed base of players [Yan05]. Surprisingly, even Microsoft’s UGC site 
Soapbox uses Flash as it attempts to win viewers from YouTube. For us-
ers, this again promotes ease of use for the video Web, and for video 
search engines, the prospect of Flash ingest as well as Flash distribution 
may be a requirement. The addition of H.264 support for the Flash Player 
will increase the adoption on the Web, and to devices in particular 
[Lynch07]. 

11.3.2 Electronic Sell Through 

The millions of songs sold through iTunes clearly impact physical media 
(CD) sales, and many efforts are underway to enable distribution of video 
electronically through download or on-demand services. However, cus-
tomers still like the visceral experience of opening and owing a disc in 
their library. They can also be assured that the music from the CD will be 
compatible with any portable media player that they will ever own. Con-
trary to this trend, we find the introduction of new physical media formats 
for HD movies: HD-DVD and BlueRay. In this case, the sheer size of the 
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media files makes electronic distribution cumbersome. So “download to 
own” may not be as popular as purchasing the disc, but on the other hand, 
“download to rent” is beginning to make inroads into the video rental mar-
ket where it can open up the possibility of near instant gratification for us-
ers, no late fees or travel to video stores, and vast collections of titles 
available. What are the implications for online video search? There will be 
increasingly accessible vast, well organized collections of movie metadata 
and the corresponding media will be available online with DRM. Yet, ser-
vices for organizing personal media collections that include some support 
for removable media will continue to be valuable. 

11.3.3 Peer-to-peer Delivery 

The traditional client–server media streaming architectures, which have 
been migrating to HTTP and benefiting from caching improvements pro-
vided by content distribution systems, are experiencing competition from 
peer-to-peer (P2P) distribution technologies. Once feared by content own-
ers as decentralized and therefore difficult to litigate vehicles for piracy, 
P2P can be used for legitimate content distribution [BBC06]. Originators 
benefit from vastly decreased distribution costs and users enjoy rapid re-
sponse for downloading media. 

11.3.4 Managed Download 

Distribution of content where a download manager takes care of caching 
the media locally removes any networking variability and produces a qual-
ity of experience for the user that is not available with streaming media. 
There are many examples on the desktop, and perhaps iTunes is the 
download manager with the largest installed base. This “over the top” 
(OTT) distribution method for VoD content represents a challenge to exist-
ing cable and emerging IPTV VoD systems which rely on guaranteed QoS 
associated with tightly managed networks. OTT or best effort delivery is 
seen by some as a legitimate challenge for distribution of linear content as 
well. The service provider view is that TV viewers will settle for nothing 
less than instant channel change while watching live HDTV, and telecom-
munications companies are making huge investments to upgrade network 
infrastructure to deliver IPTV to support these capabilities. It seems likely 
that OTT will not fully supplant managed delivery of linear content for the 
mass market for several years. 
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11.3.5 Syndication 

Users want to view video from all sources from a single interface, even 
though providers might wish them to visit their portal and see only their 
content. Single source destinations will not go away, in fact we are seeing 
that every TV series has its own site for fan interaction, etc., but content is 
also being syndicated to meet the users’ needs. For content discovery, 
video search engines will use syndication protocols and the value of a 
blind Web crawl has diminished. 

 

11.4 The Video Web and User Interaction 

 

11.4.1 Web-Based Editing 

For UGC, the ability to push raw content directly to Web storage and use 
Web-based editing tools to create more polished presentations will become 
a viable alternative, particularly for mobile capture. The notion of content 
mash-ups, where users pull content from various sources to create novel 
works, already prevalent today in an offline sense, will become simplified 
and dynamic. The implications for copyright owners become troublesome, 
as the “novel” works may be deemed “derivative” by some. For search en-
gines, we can imagine systems that maintain original source content identi-
fiers and edit decision lists in order to efficiently re-use derived index re-
sults. This becomes impractical, perhaps, as we move from simple cut 
edits to more elaborate blending such as dissolves or inserts into regions. 
Also, it is common for consumers to pull audio from one source and video 
from another, so identifiers must be managed at a track level. 

11.4.2 Media Browsing 

The minimalist search box Web form UI was never a good fit for video re-
trieval, and the lure of promotional revenue has led most video sites to cre-
ate a dazzling array of enticing content on the landing page. Features such 
as “most popular” are common on video sites, but less so on text search 
engines. Also, the notion of “similar” videos displayed after the first query 
cycle leads the viewer away from subsequent searches and more towards 
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browsing. The fact that video consumption is more lean-back in nature 
than the “speed reading” mode of operation for text search perhaps justi-
fies the focus on browsing as opposed to search. In many cases, users will 
visit their favorite video search portal to see “what is on” rather than to 
start searching based on keywords. 

11.4.3 Social Tagging 

The author as the single source of content description is yielding to a world 
where multiple sources of descriptions, both automated via media process-
ing, and manual via social tagging, are common. Search engines must 
track the source of content descriptions and perhaps apply weights based 
on authority or consensus when generating ranked results lists. 

11.4.4 Dynamic Interfaces 

Displaying search results as a one dimensional rank ordered list is the sim-
plest representation. Already, researchers are experimenting with 2-D dy-
namically rendered views where the search rank dimension is augmented 
with other attributes such as similarity, or similarity with respect to a par-
ticular feature or modality [Worring07]. 

User interfaces for rendering video search results are dominated by the 
thumbnail image today, but some sites are adding motion [Blinkx07] to 
provide users with more insight into the clips’ content using the same 
screen real estate. 

Video players embedded in a region of Web page in a browser are pre-
dominant and will continue, but new immersive video sites such as Joost, 
particularly focused on InternetTV applications, which offer full screen re-
play in full screen with a TV-like paradigm, are just beginning to emerge. 
This inverts the interface, where traditionally the query and results occupy 
a large portion of the UI with the video in a small window, to one in which 
the navigation controls and results occupy a less dominant region of focus 
for the user. Search engines must work within these confines to render 
more accurate results in less space – or adopt a modal UI paradigm of 
shifting back and forth from browse to view modalities, which is disrup-
tive and often can be confusing for users.  

As with the immersive, full screen players, video players will become 
more integrated with the HTML model from a Web developer’s perspec-
tive. The image tag has served well for integrating still images into Web 
pages, but attempts to extend this with support for animations and video 
have been of limited use. Flash authoring offers an alternative, but moves 
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away from the open standards Web interoperability philosophy.  HTML 
5.0 may include support for video objects within in the document object 
model [Hickson07]. 

11.4.5 Video Blogs (vlogs) 

Users have several options for publishing their videos; for the highly or-
ganized, a video Podcast offers publication for mobility, but constrains 
creativity and viewer interaction. Video sharing sites are simpler to use 
and allow for viewer feedback. Posting in blog format is a better fit if tex-
tual and video content are both used. The lines of demarcation between 
these forms are blurred, for example, sharing sites offer the ability to or-
ganize content into “channels,” and there are tools that allow for re-use of 
Podcast content in an online interaction setting. 

To appease rights owners, automated fingerprinting for content identifi-
cation to detect copyright infringement is being deployed. There is no sub-
stitute for manual review for judging the appropriateness of content for a 
given audience, however this review may be closed (internal to the service 
provider) or open to the community to leverage the collective wisdom of 
viewers. These systems are part of a process that involves auditing and ap-
peals processes since full automation is not practical. 

11.4.6 Integrated Collections  

To avoid searching in multiple places, users desire breadth of scope, but 
current revenue models are at odds with this. Beyond comprehensive Web 
video search, unified retrieval regardless of delivery mechanism (broadcast 
TV, radio, etc.) will be appreciated by consumers who are more interested 
in content than how they receive it [Pastra06]. 

 
 

11.5 Television Technology and Consumption 

 
IPTV is in its infancy, particularly in the US and the adoption rate will be a 
function of business realities as much as technical capabilities. However, 
IP connectivity to the set-top or flat screen TV itself is arriving from sev-
eral fronts as big players jockey for control of this highly prized consumer 
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screen; a notable recent entry with an elegant user experience is the Ap-
pleTV. Today’s gaming consoles are IP enabled and include ample storage 
for media. Wireless bandwidth is increasing to make in-home connectivity 
easier, and MOCA and HPNA are in use by service providers for home 
networking to augment traditional broadcast with IPTV features. These 
trends open up the possibility for video search on the set-top, however par-
ticular focus on the UI will be required for this to be of any use. 

11.5.1 Proliferation of Channels 

It is not clear how many channels people will need or can tolerate, but 
since television was invented, the number of channels has only gone up. 
Service providers advertise the number of channels offered as a selling 
point, and IPTV promises unlimited channels from international sources to 
niche content. EPG navigation is currently a problem for users, but this 
represents an opportunity for video search and content organization sys-
tems. 

11.5.2 Live to Time Shifted 

Cheap hard disc storage with ever increasing density makes DVRs practi-
cal and even though HD recording gluttonously consumes storage space, 
the number of hours of recording available for users is on the rise. Some 
providers even allow transfer of recordings to removable USB discs (with 
encryption) for “unlimited” recording. Again, locating content of interest is 
a potential problem for users but an opportunity for well managed services 
employing video search technology. It is worth pointing out that there is a 
limit to the percentage of TV viewing that will move from live to time 
shifted. Of course live events come to mind, but also scheduled releases of 
popular programs are likely to be consumed shortly after being broadcast. 
How else can people discuss them the next day over lunch? Here the DVR 
may act as a short-term buffer, rather than an archiving device. 

11.5.3 Mobile Consumption 

It’s technically possible to retransmit video received at home to anywhere 
that IP can reach (e.g. using Sony Location Free TV or Sling Box). How-
ever, certain FCC restrictions and sports broadcasting contracts (“black-
outs”) restrict service providers from offering this to consumers. As on-
line content services mature, not only technically in terms of security and 
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quality, but also in terms of business models where users purchase content 
licenses for on-line as well as at-home viewing seamlessly, the rationale 
for slinging the content over to a user’s domicile and back again may break 
down. Also, for personal media collections, users will demand any time, 
any place access, with back-up security. This suggests an online solution 
and as the volume of media accessed anytime, anyplace grows, searching 
and organizing tools will become more valuable. 

 

11.6 Trends in Media Devices 

 

11.6.1 Increased Media Capabilities 

Even personal media players that are intended mainly for music are being 
manufactured with better displays and the ability to play motion video. 
Still, some consumption scenarios such as while driving an automobile, are 
not suitable for watching video, but for devices to be more versatile for a 
range of contexts, video capability is a plus. Considering the wide range of 
video replay devices from DVD players with SD card slots, connected pic-
ture frames, portable gaming devices such as the PSP, and of course iPods, 
the proliferation of video screens is astounding. Coupling this with ever 
increasing storage again points to the value for media management sys-
tems or personal media library managers to intervene. The more automated 
these systems become in regards to searching metadata and content itself, 
the better the user experience will be. 

Portable media players are increasing in capability to include Web 
browsers, and easily connect to wireless networks. Novel interfaces such 
as multitouch and speech for command and control increase human–
machine input bandwidth and ease the adaptation of content to the mobile 
Web and facilitate video retrieval in the mobile environment. The power of 
speech for user input is amplified greatly when used in a multimodal con-
text [Johnston07]. 

The pixel density of mobile device screens is increasing, and entry level 
digital cameras can now capture VGA resolution video at 30 Hz using in-
expensive, fast removable memory. HD consumer video camcorders are 
rapidly replacing standard definition. These trends result in an increasing 
abundance of higher quality imagery which must be stored and eventually 
retrieved. 
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 11.6.2 Increasing Accessibility 

The iPod Touch and iPhone are the first iPods to support true closed cap-
tioning which will bring video to a wider audience – not only to the hear-
ing impaired, but to public consumption contexts where audio replay is 
undesirable. The increased number of devices capable of displaying cap-
tions will help to motivate content owners to caption more content, and 
this will generate a good source of index data for search engines. 

11.6.3 DRM 

DRM hampers the move to digital media as consumers wrestle with in-
compatible formats and restrictions in usage that they do not experience 
with CD media. Recently, Amazon is offering DRM-free MP3 songs and 
the major record labels have agreed to offer content without DRM 
[Leeds07]. Note that we are yet not seeing a similar trend with respect to 
high value video content such as movies. 

11.6.4 Home Media Systems 

High-end consumer media receivers feature IP connectivity for net radio 
and more affordable dedicated devices have been on the market for some 
time. LCD TVs such as HP’s MediaSmart line now include an RJ-45 input 
jack and these devices also support WiFi for increased connection conven-
ience. Instead of isolated components we will move to a seamlessly “con-
nected home” although the current landscape is fraught with complexities 
and incompatibilities for the consumer. When these are resolved, perhaps 
via adoption of standards such as DLNA, consumers will be able to access, 
control and search media archives across multiple devices in the home. 

 

11.7 Media Processing Research 

 
With all of these trends in the production, distribution and consumption of 
media we will see increasing demand for systems to manage video content; 
to organize, derive associations, relationships, summarize as well as search 
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and browse ever increasing collections of video and audio. The research 
community is responding to this changing landscape on several fronts, and 
is bringing more sophisticated analysis methods to bear on these tasks. 

While early algorithms attempted to optimize a single approach, the top 
performing systems for shot boundary detection, high-level feature extrac-
tion and recommendation systems [Bell07] employ multiple individual de-
tectors or classifiers, each of which have been highly optimized, and at-
tempt to combine these in optimal ways. Clearly the computational 
resources required can become enormous and, as has been the case for 
decades, video processing continues as one of the most computationally 
demanding of all general purpose computing applications. Thankfully, 
methods that were impractical a few years ago can be used as a component 
of multimodal approaches today for increased accuracy. Tasks such as 
story boundary detection have long been understood to benefit from mul-
timodal processing and this trend continues. As increasing amounts of 
good training data become available, we may hope to build more gener-
alizable models, and also to consider genre-specific optimizations 
[Chua04]. 

Researchers have envisioned that a large number of high level semantic 
concepts are desirable for video classification and we can trace the pro-
gression of classification systems from the early work in identifying a 
handful of classes such as indoor vs. outdoor up through 39 concepts to 
101 and then 394 and beyond [Haupt04, Haupt05]. 

For video retrieval, as we have seen, the trend is to move from high 
level metadata, to time varying metadata and to less reliance on textual de-
scriptions in any form. We can classify video search into three types; these 
are following the historical progression from simple to the more complex, 
with increasing accuracy and retrieval power. Type one video search is 
simply based on high level metadata such as title, while type two adds the 
ability to leverage detailed time-based metadata [Blinkx07a]. Type three 
involves higher level semantics and can extract features dynamically from 
multimedia queries [Tseng04]. Many current video classification tasks can 
be achieved by operating on still frames and there is a new focus on tasks 
that require true video processing such as motion analysis and event detec-
tion. 

Along these lines, a recent proposal for TRECVID evaluation involves 
surveillance event detection. This also brings a new dimension because the 
data includes multiple video streams capturing a single event. The concept 
of multistream processing is more general; video conferencing with 
telepresence using multiple cameras is a valuable area of focus for retrieval 
system research. Advanced conferencing systems utilize HD displays and 
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cameras. Pan, tilt and zoom are automated and some systems propose the 
use of omnidirectional cameras [Rui04]. 

As mentioned, content segmentation is still an area of focus, but with 
the increasing abundance of short-form content, other tasks involving clip 
collections in aggregate such as recommendation, association, similarity 
detection, near-duplicate detection [Zhang04], become more important. 

Research trends and advances in the area of content adaptation are ad-
dressed in [Chang05] with particular emphasis on summarization, mo-
saicing, transcoding and standards-based representations. Going forward, 
the authors point out the need for formal analytical foundations for video 
content adaptation.  In [Chang02], the view of the content chain from end 
to end is put forth, with several main research directions pointed out in the 
area of metadata generation from media processing as well as the impor-
tance of capturing feedback during retrieval. The notion of reverse engi-
neering of the production process, implicit in many other works but often 
ignored, is brought to light. Also the impact or value of creating solutions 
is considered; this point is all too often neglected by researchers when 
choosing an area of focus. A realistic examination of the applicability of 
Multimedia Information Retrieval (MIR) was addressed in a panel 
[Jaimes05] which raised such questions as what is the killer application for 
MIR and is MIR really necessary given that most search today is not truly 
content based if we exclude textual content. 

Roach et al. provide a good overview of the state of the art in video 
classification research and provide a taxonomy for organizing tasks such 
as genre detection and summarization [Roach02]. In 2005, Hauptman sum-
marized ten years of video retrieval work based on contributions form 
CMU as well as the broader research community [Haupt05]. Image re-
trieval publication trends have been studied by [Datta04]. 

The MediaMill project [Worring07] focuses on semantic video search, 
and has produced several advanced browsers for visualizing search results 
and allowing users to interact with large results sets efficiently. These sys-
tems (e.g. “galaxy browser,” “cross browser,” “fork browser”) take full 
advantage of available graphics rendering capabilities in order build 3-D 
interfaces that leverage the rapid visual comprehension skills of users. The 
systems have performed well in evaluations which provide an indication of 
the value of these highly interactive, highly capable systems will have in 
future retrieval systems. 
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11.8 Deployments 

 
In the last chapter we mentioned some notable video retrieval systems de-
veloped by research groups, some of which have led to larger deployments 
on the Internet which attempt to index significant amounts of published 
media. We noted SpeechBot as an early technical success in this domain; 
applying speech recognition for retrieval of large repositories of Web me-
dia. More recently Podzinger based on BBN’s highly regarded speech 
technology began indexing podcasts based on speech content and RSS 
metadata. The site indexed both audio and video podcasts and provided ex-
tracted context for query results. Rebranded “EveryZing”, the site has this 
to say regarding ingestion formats: “EveryZing can index, search and ref-
erence English and Spanish media (language tag in RSS file must begin 
with “en” or “es”), that are formatted for audio as MP3 files or for video 
that are formatted as mp4, mov, m4v, flv, mpg, or mpeg files.” [EveryZ-
ing07].  

BlinkxTV gained attention using speech recognition and other methods 
such as link context derived from page layout proximity to improve re-
trieval accuracy. They also have broad coverage of many IP media 
sources. Additional features such as displaying results in a grid with ani-
mation also give Blinkx extra panache and may prove to be valuable for 
results browsing. Based on technology from Cambridge University, the 
site reports that 111 patents protect the technology which was developed 
over 12 years, and that there are over 18M hours of index video 
[Blinkx07]. In addition to speech processing, any other available metadata, 
including closed captioning, is used to build the index. 

There are hundreds of popular video sharing sites, and of course 
Google’s YouTube is the most well known. (Google has its own video site 
developed prior to its purchase of YouTube.) With the advent of Podcast-
ing, many sites have sprung up that are focused on indexing syndicated 
content feeds since the technical barriers to entry are relatively low. These 
sites enjoy the more organized metadata extracted from RSS or similar 
syndication formats and the technical work is largely in XML processing, 
database optimization, UI generation and scaling to handle load. The popu-
larity of various sites is quite dynamic, and many social networking sites 
are participating in video search both as a content source and as a fabric 
for posting commentary on clips pasted into user pages. In addition to 
YouTube, sites such as Dabble, Truevo, Clipblast, Metacafe appear on 
most lists of popular video sites. In addition to Google, the other estab-
lished names in the search or portal arena such as Yahoo, AOL, and Mi-
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crosoft (Live Search, Soapbox) all have video search strategies, some in-
volving partnerships. Most have multiple activities underway focused on 
sharing and mobile as well as traditional video search. 
  

11.9 Conclusion 

 
Digital video technology has been steadily improving for many years, and 
recently the cost reductions combined with ease of use for capture and ed-
iting has resulted in rapid growth in the amount of video being produced. 
User generated and enterprise promotional material have mushroomed and 
augmented traditional video production sources. Distribution to mobile de-
vices and set–tops via IPTV, unheard of a few years ago, is commonplace 
today. More and more video material, even high quality material, is pub-
lished on the Web – particularly as more people turn to their laptops as an 
alternative to watching TV. Further, the Web is extending to an ever in-
creasing array of mobile devices. Therefore Web based video search will 
be a key enabling technology going forward. Media processing technolo-
gies, in addition to metadata handling systems, are available today to help 
users locate desired content and to navigate through huge amounts of video 
material for both educational and entertainment applications. These tech-
nologies, however, have significant room for improvement through algo-
rithmic innovation as well as through the application of novel engineering 
techniques to improve the overall efficiency to make indexing large video 
collections practical. These conditions provide great opportunities for re-
search and development to have a significant impact on people’s day to 
day interaction with video information. 
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AAF – Advanced Authoring Format 
 
ADI – CableLabs® Asset Distribution Interface Specification used for 
VoD metadata 
 
AMDF – Average magnitude difference function used for pitch calcula-
tion 
 
AMG – All Media Guide, provider of metadata services 
 
ANNIE – A Nearly-New Information Extraction System 
 
ASF – Microsoft’s Advanced Streaming Format 
 
ASR – Automatic Speech Recognition 
 
ATM – Asynchronous Transfer Mode – a networking technology provid-
ing guaranteed quality of service (QoS) 
 
ATSC – Advanced Television Standards Committee 
 
ATIS/IIF – Alliance for Telecommunications Industry Solutions / IPTV 
Interoperability Forum 
 
BiM – Binary format for MPEG-7 provides high compression of XML 
representations using the schema definition to remove the syntax redun-
dancy and allows separate source coders to be used for sets of element or 
attribute values 
 
CGM – Consumer generated media 
 



  Glossary 

CID – Content Identifier 
 
CMML – Continuous Media Markup Language 
 
CMS – Content management system 
 
COV – Consumer originated video 
 
CSP – Communications Service Provider 
 
DAM – Digital asset management 
 
DBMS – Database management system 
 
DCT – Discrete cosine transform 
 
DOM – Document Object Model: an interface for accessing HTML 
and XML in a tree structure; used from languages such as JavaScript 
(ECMAScript). 
 
DMA – FCC defined metropolitan area for television / radio broadcasting, 
210 in the US 
 
DLNA – Digital living network alliance; develops standards for home 
media device interoperability 
 
DVB – Digital video broadcasting 
 
DVR – Digital video recorder 
 
EMD – earth movers distance 
 
ETSI – European Telecommunications Standards Institute 
 
FAR – Frame aspect ratio 
 
GATE – General Architecture for Text Engineering 
 
Geoblocking – restricting content based on location (blackouts) 
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GMM – Gaussian mixture model 
 
GoP – Group of pictures 
 
GPS – Global positioning system 
 
GXF – General exchange format 
 
HMM – Hidden Markov model 
 
IAR – Image aspect ratio 
 
K-Space – Knowledge Space 
 
Lemmatize – Convert a word to its root form; a more advanced form of 
stemming. 
 
LSCOM – Large-Scale Concept Ontology for Multimedia workshop 
sponsored by the Disruptive Technology Office (DTO) 
 
LVCASR, LVASR, VLVASR – Large Vocabulary Continuous Auto-
matic Speech Recognition, sometimes VLVASR for “Very_.” Continuous 
implies that the input speech waveforms are not segmented and may con-
tinue without interruption for many minutes. Also the “C” sometimes ref-
erences “conversational” connoting a task with multiple speakers and dif-
ferentiating from “read speech” – a less demanding task since there are 
fewer disfluencies, and better adherence to rules of grammar, etc. 
 
MFCC – Mel-frequency cepstral coefficients, acoustic features used 
widely in speech signal processing 
 
MIC – Memory in cassette, an NVRAM chip in a tape cassette for im-
proving access time and storing metadata 
 
MPEG – Moving Picture Experts Group, a working group of ISO/IEC 
charged with development of video and audio encoding standards. 
 
MPF – Metadata Production Framework; Metadata Editor tools from 
NHK 
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NEE – Named entity extraction 
 
NLP / NLU – Natural language processing / understanding refers to the 
study of computational linguistics typically with the goal of recovering 
some form of semantics or meaning from textual data 
 
OCR – Optical character recognition 
 
OTT - Over the top: delivery of video on the Internet without guaranteed 
QoS; may refer to download delivery or  services like Joost that deliver a 
TV like experience a potential threat to Cable and IPTV VoD and service 
providers. 
 
PAR – Pixel aspect ratio 
 
PDA – Personal digital assistant 
 
POS tagging – Part of speech tagging is the NLP operation of assigning 
tags to input text to classify words as parts of speech like nouns, verbs, etc. 
 
QbH – Query by humming 
 
QoS – quality of service; as opposed to best effort, QoS is provided by the 
network and used to guarantee bandwidth for streaming media delivery 
  
SAP – Secondary audio program  
 
SDP – Session description protocol for streaming media initialization, or 
service delivery platform for providers to deliver media services. 
 
Semantic gap – low level extracted features vs. meaning, understanding 
 
Square pixel – 1:1 PAR 
 
SVG – Scaleable vector graphics 
 
SVM – Support vector machine 
 
TRECVID – TREC video retrieval evaluation, sponsored by the National 
Institute of Standards and Technology (NIST)  
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TVML – TV program making language from NHK 
 
UCC – User contributed content 
 
UGC – User generated content 
 
VDF – Virage Data Format 
 
VSF – Video Services Forum 
 
VXML – Vector markup language 
 
WPL – Windows Play List: MS extensions to SMIL that allow for repre-
senting queries against media libraries, such as “play all with at least a 
three star rating” 

 
WSX – SMIL with MS extensions 
 
Zipf’s Law – a model with roots in NLP commonly used for describing 
the long tail phenomenon with regard to the popularity of VoD titles
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